NAG Library Manual, Mark 28.7
```    Program f07fpfe

!     F07FPF Example Program Text

!     Mark 28.7 Release. NAG Copyright 2022.

!     .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zposvx
!     .. Implicit None Statement ..
Implicit None
!     .. Parameters ..
Integer, Parameter               :: nin = 5, nout = 6
!     .. Local Scalars ..
Real (Kind=nag_wp)               :: rcond
Integer                          :: i, ifail, info, lda, ldaf, ldb, ldx, &
n, nrhs
Character (1)                    :: equed
!     .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:),  &
x(:,:)
Real (Kind=nag_wp), Allocatable  :: berr(:), ferr(:), rwork(:), s(:)
Character (1)                    :: clabs(1), rlabs(1)
!     .. Executable Statements ..
Write (nout,*) 'F07FPF Example Program Results'
Write (nout,*)
Flush (nout)
!     Skip heading in data file
lda = n
ldaf = n
ldb = n
ldx = n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(2*n),x(ldx,nrhs),         &
berr(nrhs),ferr(nrhs),rwork(n),s(n))

!     Read the upper triangular part of A from data file

!     Read B from data file

!     Solve the equations AX = B for X
!     The NAG name equivalent of zposvx is f07fpf
Call zposvx('Equilibration','Upper',n,nrhs,a,lda,af,ldaf,equed,s,b,ldb,  &
x,ldx,rcond,ferr,berr,work,rwork,info)

If ((info==0) .Or. (info==n+1)) Then

!       Print solution, error bounds, condition number and the form
!       of equilibration

!       ifail: behaviour on error exit
!              =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04dbf('General',' ',n,nrhs,x,ldx,'Bracketed','F7.4',             &
'Solution(s)','Integer',rlabs,'Integer',clabs,80,0,ifail)

Write (nout,*)
Write (nout,*) 'Backward errors (machine-dependent)'
Write (nout,99999) berr(1:nrhs)
Write (nout,*)
Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
Write (nout,99999) ferr(1:nrhs)
Write (nout,*)
Write (nout,*) 'Estimate of reciprocal condition number'
Write (nout,99999) rcond
Write (nout,*)
If (equed=='N') Then
Write (nout,*) 'A has not been equilibrated'
Else If (equed=='Y') Then
Write (nout,*)                                                       &
'A has been row and column scaled as diag(S)*A*diag(S)'
End If

If (info==n+1) Then
Write (nout,*)
Write (nout,*) 'The matrix A is singular to working precision'
End If
Else
Write (nout,99998) 'The leading minor of order ', info,                &
' is not positive definite'
End If

99999 Format ((3X,1P,7E11.1))
99998 Format (1X,A,I3,A)
End Program f07fpfe
```