NAG Library Manual, Mark 28.7
```/* nag_lapacklin_zgesvx (f07apc) Example Program.
*
* Copyright 2022 Numerical Algorithms Group.
*
* Mark 28.7, 2022.
*/

#include <nag.h>
#include <stdio.h>

int main(void) {
/* Scalars */
double growth_factor, rcond;
Integer exit_status = 0, i, j, n, nrhs, pda, pdaf, pdb, pdx;

/* Arrays */
Complex *a = 0, *af = 0, *b = 0, *x = 0;
double *berr = 0, *c = 0, *ferr = 0, *r = 0;
Integer *ipiv = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_EquilibrationType equed;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_lapacklin_zgesvx (f07apc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &nrhs);
if (n < 0 || nrhs < 0) {
printf("Invalid n or nrhs\n");
exit_status = 1;
return exit_status;
}

pda = n;
pdaf = n;
#ifdef NAG_COLUMN_MAJOR
pdb = n;
pdx = n;
#else
pdb = nrhs;
pdx = nrhs;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) || !(af = NAG_ALLOC(n * n, Complex)) ||
!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(x = NAG_ALLOC(n * nrhs, Complex)) ||
!(berr = NAG_ALLOC(nrhs, double)) || !(c = NAG_ALLOC(n, double)) ||
!(ferr = NAG_ALLOC(nrhs, double)) || !(r = NAG_ALLOC(n, double)) ||
!(ipiv = NAG_ALLOC(n, Integer))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Read A and B from data file */
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n] ");

for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n] ");

/* Solve the equations AX = B for X using
* nag_lapacklin_zgesvx (f07apc).
*/
nag_lapacklin_zgesvx(order, Nag_EquilibrateAndFactor, Nag_NoTrans, n, nrhs, a,
pda, af, pdaf, ipiv, &equed, r, c, b, pdb, x, pdx,
&rcond, ferr, berr, &growth_factor, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR) {
printf("Error from nag_lapacklin_zgesvx (f07apc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution using nag_file_print_matrix_complex_gen_comp (x04dbc). */
fflush(stdout);
nag_file_print_matrix_complex_gen_comp(
order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_complex_gen_comp (x04dbc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

/* Print error bounds, condition number, the form of equilibration
* and the pivot growth factor
*/
printf("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
printf("%11.1e%s", berr[j - 1], j % 7 == 0 ? "\n" : " ");

printf("\n\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
printf("%11.1e%s", ferr[j - 1], j % 7 == 0 ? "\n" : " ");

printf("\n\n");
if (equed == Nag_NoEquilibration)
printf("A has not been equilibrated\n");
else if (equed == Nag_RowEquilibration)
printf("A has been row scaled as diag(R)*A\n");
else if (equed == Nag_ColumnEquilibration)
printf("A has been column scaled as A*diag(C)\n");
else if (equed == Nag_RowAndColumnEquilibration)
printf("A has been row and column scaled as diag(R)*A*diag(C)\n");

printf("\nReciprocal condition number estimate of scaled matrix\n");
printf("%11.1e\n\n", rcond);
printf("Estimate of reciprocal pivot growth factor\n%11.1e\n", growth_factor);

if (fail.code == NE_SINGULAR) {
printf("Error from nag_lapacklin_zgesvx (f07apc).\n%s\n", fail.message);
exit_status = 1;
}

END:
NAG_FREE(a);
NAG_FREE(af);
NAG_FREE(b);
NAG_FREE(x);
NAG_FREE(berr);
NAG_FREE(c);
NAG_FREE(ferr);
NAG_FREE(r);
NAG_FREE(ipiv);

return exit_status;
}

#undef B
#undef A
```