NAG Library Manual, Mark 28.4
```
E04NE_T1W_F Example Program Results

*** e04nc

Parameters
----------

Problem type...........       LS1       Hessian................        NO

Linear constraints.....         3       Feasibility tolerance..  1.05E-08
Variables..............         9       Crash tolerance........  1.00E-02
Objective matrix rows..        10       Rank tolerance.........  1.11E-14

Infinite bound size....  1.00E+20       COLD start.............
Infinite step size.....  1.00E+20       EPS (machine precision)  1.11E-16

Print level............         1       Feasibility phase itns.        60
Monitoring file........        -1       Optimality  phase itns.        60

Workspace provided is     IWORK(       9),  WORK(     261).
To solve problem we need  IWORK(       9),  WORK(     261).

Rank of the objective function data matrix =     6

Exit from LS problem after    13 iterations.

Varbl State     Value       Lower Bound   Upper Bound    Lagr Mult   Slack

V   1    LL    0.00000           .         2.00000      0.1572         .
V   2    FR   4.152607E-02       .         2.00000           .      4.1526E-02
V   3    FR   0.587176          None       2.00000           .       1.413
V   4    LL    0.00000           .         2.00000      0.8782         .
V   5    FR   9.964323E-02       .         2.00000           .      9.9643E-02
V   6    LL    0.00000           .         2.00000      0.1473         .
V   7    FR   4.905781E-02       .         2.00000           .      4.9058E-02
V   8    LL    0.00000           .         2.00000      0.8603         .
V   9    FR   0.305649           .         2.00000           .      0.3056

L Con State     Value       Lower Bound   Upper Bound    Lagr Mult   Slack

L   1    LL    2.00000       2.00000          None      0.3777     -4.4409E-16
L   2    UL    2.00000          None       2.00000     -5.7914E-02     .
L   3    LL    1.00000       1.00000       4.00000      0.1075         .

Exit e04nc  - Optimal LS solution.

Final LS objective value =   0.8134082E-01

Derivatives calculated: First order tangents
Computational mode    : algorithmic

dobj/db
1
1  -0.0831
2   0.1320
3   0.0633
4  -0.0831
5  -0.0831
6  -0.0099
7   0.0166
8  -0.0831
9  -0.1562
10  -0.2981

dobj/dbl
1
1    1.5715E-01
2    0.0000E+00
3    0.0000E+00
4    8.7817E-01
5    0.0000E+00
6    1.4728E-01
7   -3.9587E-16
8    8.6026E-01
9    0.0000E+00
10    3.7775E-01
11    0.0000E+00
12    1.0753E-01

dobj/dbu
1
1   0.0000
2   0.0000
3   0.0000
4   0.0000
5   0.0000
6   0.0000
7   0.0000
8   0.0000
9   0.0000
10   0.0000
11  -0.0579
12   0.0000
```