# NAG CL Interfacef16rbc (dgb_​norm)

Settings help

CL Name Style:

## 1Purpose

f16rbc calculates the value of the $1$-norm, the $\infty$-norm, the Frobenius norm or the maximum absolute value of the elements of a real $m×n$ band matrix stored in banded form.

## 2Specification

 #include
 void f16rbc (Nag_OrderType order, Nag_NormType norm, Integer m, Integer n, Integer kl, Integer ku, const double ab[], Integer pdab, double *r, NagError *fail)
The function may be called by the names: f16rbc, nag_blast_dgb_norm or nag_dgb_norm.

## 3Description

Given a real $m×n$ banded matrix, $A$, f16rbc calculates one of the values given by
 ${‖A‖}_{1}=\underset{j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\sum _{i=1}^{m}|{a}_{ij}|$ (the $1$-norm of $A$), ${‖A‖}_{\infty }=\underset{i}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\sum _{j=1}^{n}|{a}_{ij}|$ (the $\infty$-norm of $A$), ${‖A‖}_{F}={\left(\sum _{i=1}^{m}\sum _{j=1}^{n}{|{a}_{ij}|}^{2}\right)}^{1/2}$ (the Frobenius norm of $A$),   or $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}|{a}_{ij}|$ (the maximum absolute element value of $A$).

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{norm}$Nag_NormType Input
On entry: specifies the value to be returned.
${\mathbf{norm}}=\mathrm{Nag_OneNorm}$
The $1$-norm.
${\mathbf{norm}}=\mathrm{Nag_FrobeniusNorm}$
The Frobenius (or Euclidean) norm.
${\mathbf{norm}}=\mathrm{Nag_InfNorm}$
The $\infty$-norm.
${\mathbf{norm}}=\mathrm{Nag_MaxNorm}$
The value $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}|{a}_{ij}|$ (not a norm).
Constraint: ${\mathbf{norm}}=\mathrm{Nag_OneNorm}$, $\mathrm{Nag_FrobeniusNorm}$, $\mathrm{Nag_InfNorm}$ or $\mathrm{Nag_MaxNorm}$.
3: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
4: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
5: $\mathbf{kl}$Integer Input
On entry: ${k}_{l}$, the number of subdiagonals within the band of $A$.
Constraint: ${\mathbf{kl}}\ge 0$.
6: $\mathbf{ku}$Integer Input
On entry: ${k}_{u}$, the number of superdiagonals within the band of $A$.
Constraint: ${\mathbf{ku}}\ge 0$.
7: $\mathbf{ab}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array ab must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdab}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pdab}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m×n$ band matrix $A$.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements ${A}_{ij}$, for row $i=1,\dots ,m$ and column $j=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,i-{k}_{l}\right),\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,i+{k}_{u}\right)$, depends on the order argument as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored as ${\mathbf{ab}}\left[\left(j-1\right)×{\mathbf{pdab}}+{\mathbf{ku}}+i-j\right]$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored as ${\mathbf{ab}}\left[\left(i-1\right)×{\mathbf{pdab}}+{\mathbf{kl}}+j-i\right]$.
8: $\mathbf{pdab}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array ab.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kl}}+{\mathbf{ku}}+1$.
9: $\mathbf{r}$double * Output
On exit: the value of the norm specified by norm.
10: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{kl}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{kl}}\ge 0$.
On entry, ${\mathbf{ku}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{ku}}\ge 0$.
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_3
On entry, ${\mathbf{pdab}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{kl}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{ku}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kl}}+{\mathbf{ku}}+1$.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

f16rbc is not threaded in any implementation.

None.

## 10Example

Calculates the various norms of a $6×4$ banded matrix with two subdiagonals and one superdiagonal.

### 10.1Program Text

Program Text (f16rbce.c)

### 10.2Program Data

Program Data (f16rbce.d)

### 10.3Program Results

Program Results (f16rbce.r)