# NAG CL Interfacef16pfc (dtrmv)

Settings help

CL Name Style:

## 1Purpose

f16pfc performs matrix-vector multiplication for a real triangular matrix.

## 2Specification

 #include
 void f16pfc (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Nag_DiagType diag, Integer n, double alpha, const double a[], Integer pda, double x[], Integer incx, NagError *fail)
The function may be called by the names: f16pfc, nag_blast_dtrmv or nag_dtrmv.

## 3Description

f16pfc performs one of the matrix-vector operations
 $x←αAx or x←αATx,$
where $A$ is an $n×n$ real triangular matrix, $x$ is an $n$-element real vector and $\alpha$ is a real scalar.

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{uplo}$Nag_UploType Input
On entry: specifies whether $A$ is upper or lower triangular.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3: $\mathbf{trans}$Nag_TransType Input
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$x←\alpha Ax$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$
$x←\alpha {A}^{\mathrm{T}}x$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, $\mathrm{Nag_Trans}$ or $\mathrm{Nag_ConjTrans}$.
4: $\mathbf{diag}$Nag_DiagType Input
On entry: specifies whether $A$ has nonunit or unit diagonal elements.
${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$
The diagonal elements are stored explicitly.
${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$
The diagonal elements are assumed to be $1$ and are not referenced.
Constraint: ${\mathbf{diag}}=\mathrm{Nag_NonUnitDiag}$ or $\mathrm{Nag_UnitDiag}$.
5: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
6: $\mathbf{alpha}$double Input
On entry: the scalar $\alpha$.
7: $\mathbf{a}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the $n×n$ triangular matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
If ${\mathbf{diag}}=\mathrm{Nag_UnitDiag}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.
8: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9: $\mathbf{x}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)|{\mathbf{incx}}|\right)$.
On entry: the right-hand side vector $b$.
On exit: the solution vector $x$.
10: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
11: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

f16pfc is not threaded in any implementation.

None.

## 10Example

This example computes the matrix-vector product
 $y=αAx$
where
 $A = ( 1.0 0.0 0.0 0.0 2.0 2.0 0.0 0.0 3.0 3.0 3.0 0.0 4.0 4.0 4.0 4.0 ) ,$
 $x = ( -1.0 2.0 -3.0 1.0 )$
and
 $α=1.5 .$

### 10.1Program Text

Program Text (f16pfce.c)

### 10.2Program Data

Program Data (f16pfce.d)

### 10.3Program Results

Program Results (f16pfce.r)