# NAG CL Interfacef08sbc (dsygvx)

Settings help

CL Name Style:

## 1Purpose

f08sbc computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
 $Az=λBz , ABz=λz or BAz=λz ,$
where $A$ and $B$ are symmetric and $B$ is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## 2Specification

 #include
 void f08sbc (Nag_OrderType order, Integer itype, Nag_JobType job, Nag_RangeType range, Nag_UploType uplo, Integer n, double a[], Integer pda, double b[], Integer pdb, double vl, double vu, Integer il, Integer iu, double abstol, Integer *m, double w[], double z[], Integer pdz, Integer jfail[], NagError *fail)
The function may be called by the names: f08sbc, nag_lapackeig_dsygvx or nag_dsygvx.

## 3Description

f08sbc first performs a Cholesky factorization of the matrix $B$ as $B={U}^{\mathrm{T}}U$, when ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $B=L{L}^{\mathrm{T}}$, when ${\mathbf{uplo}}=\mathrm{Nag_Lower}$. The generalized problem is then reduced to a standard symmetric eigenvalue problem
 $Cx=λx ,$
which is solved for the desired eigenvalues and eigenvectors; the eigenvectors are then backtransformed to give the eigenvectors of the original problem.
For the problem $Az=\lambda Bz$, the eigenvectors are normalized so that the matrix of eigenvectors, $Z$, satisfies
 $ZT A Z = Λ and ZT B Z = I ,$
where $\Lambda$ is the diagonal matrix whose diagonal elements are the eigenvalues. For the problem $ABz=\lambda z$ we correspondingly have
 $Z-1 A Z-T = Λ and ZT B Z = I ,$
and for $BAz=\lambda z$ we have
 $ZT A Z = Λ and ZT B-1 Z = I .$

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug
Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{itype}$Integer Input
On entry: specifies the problem type to be solved.
${\mathbf{itype}}=1$
$Az=\lambda Bz$.
${\mathbf{itype}}=2$
$ABz=\lambda z$.
${\mathbf{itype}}=3$
$BAz=\lambda z$.
Constraint: ${\mathbf{itype}}=1$, $2$ or $3$.
3: $\mathbf{job}$Nag_JobType Input
On entry: indicates whether eigenvectors are computed.
${\mathbf{job}}=\mathrm{Nag_EigVals}$
Only eigenvalues are computed.
${\mathbf{job}}=\mathrm{Nag_DoBoth}$
Eigenvalues and eigenvectors are computed.
Constraint: ${\mathbf{job}}=\mathrm{Nag_EigVals}$ or $\mathrm{Nag_DoBoth}$.
4: $\mathbf{range}$Nag_RangeType Input
On entry: if ${\mathbf{range}}=\mathrm{Nag_AllValues}$, all eigenvalues will be found.
If ${\mathbf{range}}=\mathrm{Nag_Interval}$, all eigenvalues in the half-open interval $\left({\mathbf{vl}},{\mathbf{vu}}\right]$ will be found.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, the ilth to iuth eigenvalues will be found.
Constraint: ${\mathbf{range}}=\mathrm{Nag_AllValues}$, $\mathrm{Nag_Interval}$ or $\mathrm{Nag_Indices}$.
5: $\mathbf{uplo}$Nag_UploType Input
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangles of $A$ and $B$ are stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangles of $A$ and $B$ are stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
6: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrices $A$ and $B$.
Constraint: ${\mathbf{n}}\ge 0$.
7: $\mathbf{a}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the $n×n$ symmetric matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the lower triangle (if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$) or the upper triangle (if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$) of a, including the diagonal, is overwritten.
8: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9: $\mathbf{b}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array b must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{n}}\right)$.
On entry: the $n×n$ symmetric matrix $B$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $B$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $B$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the triangular factor $U$ or $L$ from the Cholesky factorization $B={U}^{\mathrm{T}}U$ or $B=L{L}^{\mathrm{T}}$.
10: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
11: $\mathbf{vl}$double Input
12: $\mathbf{vu}$double Input
On entry: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, the lower and upper bounds of the interval to be searched for eigenvalues.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Indices}$, vl and vu are not referenced.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
13: $\mathbf{il}$Integer Input
14: $\mathbf{iu}$Integer Input
On entry: if ${\mathbf{range}}=\mathrm{Nag_Indices}$, il and iu specify the indices (in ascending order) of the smallest and largest eigenvalues to be returned, respectively.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Interval}$, il and iu are not referenced.
Constraints:
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
15: $\mathbf{abstol}$double Input
On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $\left[a,b\right]$ of width less than or equal to
 $abstol+ε max(|a|,|b|) ,$
where $\epsilon$ is the machine precision. If abstol is less than or equal to zero, then $\epsilon {‖T‖}_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $C$ to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold , not zero. If this function returns with ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE, indicating that some eigenvectors did not converge, try setting abstol to . See Demmel and Kahan (1990).
16: $\mathbf{m}$Integer * Output
On exit: the total number of eigenvalues found. $0\le {\mathbf{m}}\le {\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$, ${\mathbf{m}}={\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, ${\mathbf{m}}={\mathbf{iu}}-{\mathbf{il}}+1$.
17: $\mathbf{w}\left[{\mathbf{n}}\right]$double Output
On exit: the first m elements contain the selected eigenvalues in ascending order.
18: $\mathbf{z}\left[\mathit{dim}\right]$double Output
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the first m columns of $Z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$th column of $Z$ holding the eigenvector associated with ${\mathbf{w}}\left[i-1\right]$. The eigenvectors are normalized as follows:
• if ${\mathbf{itype}}=1$ or $2$, ${Z}^{\mathrm{T}}BZ=I$;
• if ${\mathbf{itype}}=3$, ${Z}^{\mathrm{T}}{B}^{-1}Z=I$;
• if an eigenvector fails to converge (${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE), then that column of $Z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in jfail.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, z is not referenced.
19: $\mathbf{pdz}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
20: $\mathbf{jfail}\left[\mathit{dim}\right]$Integer Output
Note: the dimension, dim, of the array jfail must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the first m elements of jfail are zero;
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE, the first ${\mathbf{fail}}\mathbf{.}\mathbf{errnum}$ elements of jfail contains the indices of the eigenvectors that failed to converge.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, jfail is not referenced.
21: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_CONVERGENCE
The algorithm failed to converge; $⟨\mathit{\text{value}}⟩$ eigenvectors failed to converge.
NE_ENUM_INT_2
On entry, ${\mathbf{job}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdz}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_ENUM_INT_3
On entry, ${\mathbf{range}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{il}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{iu}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
NE_ENUM_REAL_2
On entry, ${\mathbf{range}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{vl}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{vu}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
NE_INT
On entry, ${\mathbf{itype}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{itype}}=1$, $2$ or $3$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
On entry, ${\mathbf{pdz}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_MAT_NOT_POS_DEF
If ${\mathbf{fail}}\mathbf{.}\mathbf{errnum}={\mathbf{n}}+⟨\mathit{\text{value}}⟩$, for $1\le ⟨\mathit{\text{value}}⟩\le {\mathbf{n}}$, then the leading minor of order $⟨\mathit{\text{value}}⟩$ of $B$ is not positive definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

If $B$ is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of $B$ differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of $B$ would suggest. See Section 4.10 of Anderson et al. (1999) for details of the error bounds.

## 8Parallelism and Performance

f08sbc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f08sbc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is proportional to ${n}^{3}$.
The complex analogue of this function is f08spc.

## 10Example

This example finds the eigenvalues in the half-open interval $\left(-1.0,1.0\right]$, and corresponding eigenvectors, of the generalized symmetric eigenproblem $Az=\lambda Bz$, where
 $A = ( 0.24 0.39 0.42 -0.16 0.39 -0.11 0.79 0.63 0.42 0.79 -0.25 0.48 -0.16 0.63 0.48 -0.03 ) and B= ( 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.09 0.56 -0.83 0.76 0.34 -0.10 1.09 0.34 1.18 ) .$
The example program for f08scc illustrates solving a generalized symmetric eigenproblem of the form $ABz=\lambda z$.

### 10.1Program Text

Program Text (f08sbce.c)

### 10.2Program Data

Program Data (f08sbce.d)

### 10.3Program Results

Program Results (f08sbce.r)