# NAG CL Interfacef07jhc (dptrfs)

Settings help

CL Name Style:

## 1Purpose

f07jhc computes error bounds and refines the solution to a real system of linear equations $AX=B$, where $A$ is an $n×n$ symmetric positive definite tridiagonal matrix and $X$ and $B$ are $n×r$ matrices, using the modified Cholesky factorization returned by f07jdc and an initial solution returned by f07jec. Iterative refinement is used to reduce the backward error as much as possible.

## 2Specification

 #include
 void f07jhc (Nag_OrderType order, Integer n, Integer nrhs, const double d[], const double e[], const double df[], const double ef[], const double b[], Integer pdb, double x[], Integer pdx, double ferr[], double berr[], NagError *fail)
The function may be called by the names: f07jhc, nag_lapacklin_dptrfs or nag_dptrfs.

## 3Description

f07jhc should normally be preceded by calls to f07jdc and f07jec. f07jdc computes a modified Cholesky factorization of the matrix $A$ as
 $A=LDLT ,$
where $L$ is a unit lower bidiagonal matrix and $D$ is a diagonal matrix, with positive diagonal elements. f07jec then utilizes the factorization to compute a solution, $\stackrel{^}{X}$, to the required equations. Letting $\stackrel{^}{x}$ denote a column of $\stackrel{^}{X}$, f07jhc computes a component-wise backward error, $\beta$, the smallest relative perturbation in each element of $A$ and $b$ such that $\stackrel{^}{x}$ is the exact solution of a perturbed system
 $(A+E) x^ = b + f , with |eij| ≤ β |aij| , and |fj| ≤ β |bj| .$
The function also estimates a bound for the component-wise forward error in the computed solution defined by $\mathrm{max}|{x}_{i}-\stackrel{^}{{x}_{i}}|/\mathrm{max}|\stackrel{^}{{x}_{i}}|$, where $x$ is the corresponding column of the exact solution, $X$.
Note that the modified Cholesky factorization of $A$ can also be expressed as
 $A=UTDU ,$
where $U$ is unit upper bidiagonal.

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3: $\mathbf{nrhs}$Integer Input
On entry: $r$, the number of right-hand sides, i.e., the number of columns of the matrix $B$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
4: $\mathbf{d}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array d must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: must contain the $n$ diagonal elements of the matrix of $A$.
5: $\mathbf{e}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array e must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$.
On entry: must contain the $\left(n-1\right)$ subdiagonal elements of the matrix $A$.
6: $\mathbf{df}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array df must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: must contain the $n$ diagonal elements of the diagonal matrix $D$ from the $LD{L}^{\mathrm{T}}$ factorization of $A$.
7: $\mathbf{ef}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array ef must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: must contain the $\left(n-1\right)$ subdiagonal elements of the unit bidiagonal matrix $L$ from the $LD{L}^{\mathrm{T}}$ factorization of $A$.
8: $\mathbf{b}\left[\mathit{dim}\right]$const double Input
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $n×r$ matrix of right-hand sides $B$.
9: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
10: $\mathbf{x}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array x must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdx}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdx}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $X$ is stored in
• ${\mathbf{x}}\left[\left(j-1\right)×{\mathbf{pdx}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{x}}\left[\left(i-1\right)×{\mathbf{pdx}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $n×r$ initial solution matrix $X$.
On exit: the $n×r$ refined solution matrix $X$.
11: $\mathbf{pdx}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array x.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdx}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdx}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
12: $\mathbf{ferr}\left[{\mathbf{nrhs}}\right]$double Output
On exit: estimate of the forward error bound for each computed solution vector, such that ${‖{\stackrel{^}{x}}_{j}-{x}_{j}‖}_{\infty }/{‖{\stackrel{^}{x}}_{j}‖}_{\infty }\le {\mathbf{ferr}}\left[j-1\right]$, where ${\stackrel{^}{x}}_{j}$ is the $j$th column of the computed solution returned in the array x and ${x}_{j}$ is the corresponding column of the exact solution $X$. The estimate is almost always a slight overestimate of the true error.
13: $\mathbf{berr}\left[{\mathbf{nrhs}}\right]$double Output
On exit: estimate of the component-wise relative backward error of each computed solution vector ${\stackrel{^}{x}}_{j}$ (i.e., the smallest relative change in any element of $A$ or $B$ that makes ${\stackrel{^}{x}}_{j}$ an exact solution).
14: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
On entry, ${\mathbf{pdx}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdx}}>0$.
NE_INT_2
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
On entry, ${\mathbf{pdx}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdx}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdx}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdx}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 $(A+E) x^=b ,$
where
 $‖E‖∞=O(ε)‖A‖∞$
and $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 $‖x^-x‖∞ ‖x‖∞ ≤ κ(A) ‖E‖∞ ‖A‖∞ ,$
where $\kappa \left(A\right)={‖{A}^{-1}‖}_{\infty }{‖A‖}_{\infty }$, the condition number of $A$ with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Function f07jgc can be used to compute the condition number of $A$.

## 8Parallelism and Performance

f07jhc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f07jhc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations required to solve the equations $AX=B$ is proportional to $nr$. At most five steps of iterative refinement are performed, but usually only one or two steps are required.
The complex analogue of this function is f07jvc.

## 10Example

This example solves the equations
 $AX=B ,$
where $A$ is the symmetric positive definite tridiagonal matrix
 $A = ( 4.0 -2.0 0 0 0 -2.0 10.0 -6.0 0 0 0 -6.0 29.0 15.0 0 0 0 15.0 25.0 8.0 0 0 0 8.0 5.0 ) and B = ( 6.0 10.0 9.0 4.0 2.0 9.0 14.0 65.0 7.0 23.0 ) .$
Estimates for the backward errors and forward errors are also output.

### 10.1Program Text

Program Text (f07jhce.c)

### 10.2Program Data

Program Data (f07jhce.d)

### 10.3Program Results

Program Results (f07jhce.r)