NAG FL Interfaceg01etf (prob_​landau)

▸▿ Contents

Settings help

FL Name Style:

FL Specification Language:

1Purpose

g01etf returns the value of the Landau distribution function $\Phi \left(\lambda \right)$.

2Specification

Fortran Interface
 Function g01etf ( x)
 Real (Kind=nag_wp) :: g01etf Real (Kind=nag_wp), Intent (In) :: x
#include <nag.h>
 double g01etf_ (const double *x)
The routine may be called by the names g01etf or nagf_stat_prob_landau.

3Description

g01etf evaluates an approximation to the Landau distribution function $\Phi \left(\lambda \right)$ given by
 $Φ(λ)=∫-∞λϕ(λ)dλ,$
where $\varphi \left(\lambda \right)$ is described in g01mtf, using piecewise approximation by rational functions. Further details can be found in Kölbig and Schorr (1984).

4References

Kölbig K S and Schorr B (1984) A program package for the Landau distribution Comp. Phys. Comm. 31 97–111

5Arguments

1: $\mathbf{x}$Real (Kind=nag_wp) Input
On entry: the argument $\lambda$ of the function.

None.

7Accuracy

At least $7$ significant digits are usually correct, but occasionally only $6$. Such accuracy is normally considered to be adequate for applications in experimental physics.
Because of the asymptotic behaviour of $\Phi \left(\lambda \right)$, which is of the order of $\mathrm{exp}\left[-\mathrm{exp}\left(-\lambda \right)\right]$, underflow may occur on some machines when $\lambda$ is moderately large and negative.

8Parallelism and Performance

g01etf is not threaded in any implementation.

None.

10Example

This example evaluates $\Phi \left(\lambda \right)$ at $\lambda =0.5$, and prints the results.

10.1Program Text

Program Text (g01etfe.f90)

10.2Program Data

Program Data (g01etfe.d)

10.3Program Results

Program Results (g01etfe.r)