# NAG CL Interfaces19acc (kelvin_​ker)

Settings help

CL Name Style:

## 1Purpose

s19acc returns a value for the Kelvin function $\mathrm{ker}x$.

## 2Specification

 #include
 double s19acc (double x, NagError *fail)
The function may be called by the names: s19acc, nag_specfun_kelvin_ker or nag_kelvin_ker.

## 3Description

s19acc evaluates an approximation to the Kelvin function $\mathrm{ker}x$.
Note:  for $x<0$ the function is undefined and at $x=0$ it is infinite so we need only consider $x>0$.
The function is based on several Chebyshev expansions:
For $0,
 $ker⁡x=-f(t)log(x)+π16x2g(t)+y(t)$
where $f\left(t\right)$, $g\left(t\right)$ and $y\left(t\right)$ are expansions in the variable $t=2{x}^{4}-1$.
For $1,
 $ker⁡x=exp(-1116x) q(t)$
where $q\left(t\right)$ is an expansion in the variable $t=x-2$.
For $x>3$,
 $ker⁡x=π 2x e-x/2 [(1+1xc(t))cos⁡β-1xd(t)sin⁡β]$
where $\beta =\frac{x}{\sqrt{2}}+\frac{\pi }{8}$, and $c\left(t\right)$ and $d\left(t\right)$ are expansions in the variable $t=\frac{6}{x}-1$.
When $x$ is sufficiently close to zero, the result is computed as
 $ker⁡x=-γ-log(x2)+(π-38x2) x216$
and when $x$ is even closer to zero, simply as $\mathrm{ker}x=-\gamma -\mathrm{log}\left(\frac{x}{2}\right)$.
For large $x$, $\mathrm{ker}x$ is asymptotically given by $\sqrt{\frac{\pi }{2x}}{e}^{-x/\sqrt{2}}$ and this becomes so small that it cannot be computed without underflow and the function fails.

## 4References

NIST Digital Library of Mathematical Functions

## 5Arguments

1: $\mathbf{x}$double Input
On entry: the argument $x$ of the function.
Constraint: ${\mathbf{x}}>0.0$.
2: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_REAL_ARG_GT
On entry, ${\mathbf{x}}=⟨\mathit{\text{value}}⟩$. The function returns zero.
Constraint: ${\mathbf{x}}\le ⟨\mathit{\text{value}}⟩$.
x is too large, the result underflows and the function returns zero.
NE_REAL_ARG_LE
On entry, ${\mathbf{x}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{x}}>0.0$.
The function is undefined and returns zero.

## 7Accuracy

Let $E$ be the absolute error in the result, $\epsilon$ be the relative error in the result and $\delta$ be the relative error in the argument. If $\delta$ is somewhat larger than the machine precision, then we have:
 $E≃ |x2(ker1⁡x+kei1⁡x)|δ,$
 $ε ≃ |x2 ker1⁡x + kei1⁡x ker⁡x | δ.$
For very small $x$, the relative error amplification factor is approximately given by $\frac{1}{|\mathrm{log}\left(x\right)|}$, which implies a strong attenuation of relative error. However, $\epsilon$ in general cannot be less than the machine precision.
For small $x$, errors are damped by the function and hence are limited by the machine precision.
For medium and large $x$, the error behaviour, like the function itself, is oscillatory, and hence only the absolute accuracy for the function can be maintained. For this range of $x$, the amplitude of the absolute error decays like $\sqrt{\frac{\pi x}{2}}{e}^{-x/\sqrt{2}}$ which implies a strong attenuation of error. Eventually, $\mathrm{ker}x$, which asymptotically behaves like $\sqrt{\frac{\pi }{2x}}{e}^{-x/\sqrt{2}}$, becomes so small that it cannot be calculated without causing underflow, and the function returns zero. Note that for large $x$ the errors are dominated by those of the standard math library function exp.

## 8Parallelism and Performance

Background information to multithreading can be found in the Multithreading documentation.
s19acc is not threaded in any implementation.

Underflow may occur for a few values of $x$ close to the zeros of $\mathrm{ker}x$, below the limit which causes a failure with ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_REAL_ARG_GT.

## 10Example

This example reads values of the argument $x$ from a file, evaluates the function at each value of $x$ and prints the results.

### 10.1Program Text

Program Text (s19acce.c)

### 10.2Program Data

Program Data (s19acce.d)

### 10.3Program Results

Program Results (s19acce.r)