# NAG CL Interfacef08ytc (ztgexc)

Settings help

CL Name Style:

## 1Purpose

f08ytc reorders the generalized Schur factorization of a complex matrix pair in generalized Schur form.

## 2Specification

 #include
 void f08ytc (Nag_OrderType order, Nag_Boolean wantq, Nag_Boolean wantz, Integer n, Complex a[], Integer pda, Complex b[], Integer pdb, Complex q[], Integer pdq, Complex z[], Integer pdz, Integer ifst, Integer *ilst, NagError *fail)
The function may be called by the names: f08ytc, nag_lapackeig_ztgexc or nag_ztgexc.

## 3Description

f08ytc reorders the generalized complex $n×n$ matrix pair $\left(S,T\right)$ in generalized Schur form, so that the diagonal element of $\left(S,T\right)$ with row index ${i}_{1}$ is moved to row ${i}_{2}$, using a unitary equivalence transformation. That is, $S$ and $T$ are factorized as
 $S = Q^ S^ Z^H , T= Q^ T^ Z^H ,$
where $\left(\stackrel{^}{S},\stackrel{^}{T}\right)$ are also in generalized Schur form.
The pair $\left(S,T\right)$ are in generalized Schur form if $S$ and $T$ are upper triangular as returned, for example, by f08xqc, or f08xsc with ${\mathbf{job}}=\mathrm{Nag_Schur}$.
If $S$ and $T$ are the result of a generalized Schur factorization of a matrix pair $\left(A,B\right)$
 $A = QSZH , B= QTZH$
then, optionally, the matrices $Q$ and $Z$ can be updated as $Q\stackrel{^}{Q}$ and $Z\stackrel{^}{Z}$.

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{wantq}$Nag_Boolean Input
On entry: if ${\mathbf{wantq}}=\mathrm{Nag_TRUE}$, update the left transformation matrix $Q$.
If ${\mathbf{wantq}}=\mathrm{Nag_FALSE}$, do not update $Q$.
3: $\mathbf{wantz}$Nag_Boolean Input
On entry: if ${\mathbf{wantz}}=\mathrm{Nag_TRUE}$, update the right transformation matrix $Z$.
If ${\mathbf{wantz}}=\mathrm{Nag_FALSE}$, do not update $Z$.
4: $\mathbf{n}$Integer Input
On entry: $n$, the order of the matrices $S$ and $T$.
Constraint: ${\mathbf{n}}\ge 0$.
5: $\mathbf{a}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the matrix $S$ in the pair $\left(S,T\right)$.
On exit: the updated matrix $\stackrel{^}{S}$.
6: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
7: $\mathbf{b}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array b must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{n}}\right)$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the matrix $T$, in the pair $\left(S,T\right)$.
On exit: the updated matrix $\stackrel{^}{T}$
8: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9: $\mathbf{q}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array q must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdq}}×{\mathbf{n}}\right)$ when ${\mathbf{wantq}}=\mathrm{Nag_TRUE}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Q$ is stored in
• ${\mathbf{q}}\left[\left(j-1\right)×{\mathbf{pdq}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{q}}\left[\left(i-1\right)×{\mathbf{pdq}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: if ${\mathbf{wantq}}=\mathrm{Nag_TRUE}$, the unitary matrix $Q$.
On exit: if ${\mathbf{wantq}}=\mathrm{Nag_TRUE}$, the updated matrix $Q\stackrel{^}{Q}$.
If ${\mathbf{wantq}}=\mathrm{Nag_FALSE}$, q is not referenced.
10: $\mathbf{pdq}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array q.
Constraints:
• if ${\mathbf{wantq}}=\mathrm{Nag_TRUE}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdq}}\ge 1$.
11: $\mathbf{z}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{wantz}}=\mathrm{Nag_TRUE}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: if ${\mathbf{wantz}}=\mathrm{Nag_TRUE}$, the unitary matrix $Z$.
On exit: if ${\mathbf{wantz}}=\mathrm{Nag_TRUE}$, the updated matrix $Z\stackrel{^}{Z}$.
If ${\mathbf{wantz}}=\mathrm{Nag_FALSE}$, z is not referenced.
12: $\mathbf{pdz}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{wantz}}=\mathrm{Nag_TRUE}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
13: $\mathbf{ifst}$Integer Input
14: $\mathbf{ilst}$Integer * Input/Output
On entry: the indices ${i}_{1}$ and ${i}_{2}$ that specify the reordering of the diagonal elements of $\left(S,T\right)$. The element with row index ifst is moved to row ilst, by a sequence of swapping between adjacent diagonal elements.
On exit: ilst points to the row in its final position.
Constraint: $1\le {\mathbf{ifst}}\le {\mathbf{n}}$ and $1\le {\mathbf{ilst}}\le {\mathbf{n}}$.
15: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_CONSTRAINT
Constraint: if ${\mathbf{wantq}}=\mathrm{Nag_TRUE}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdq}}\ge 1$.
Constraint: if ${\mathbf{wantz}}=\mathrm{Nag_TRUE}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_INT
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
On entry, ${\mathbf{pdq}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdq}}>0$.
On entry, ${\mathbf{pdz}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INT_3
On entry, ${\mathbf{ifst}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{ilst}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: $1\le {\mathbf{ifst}}\le {\mathbf{n}}$ and $1\le {\mathbf{ilst}}\le {\mathbf{n}}$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_SCHUR
The transformed matrix pair would be too far from generalized Schur form; the problem is ill-conditioned. $\left(S,T\right)$ may have been partially reordered, and ilst points to the first row of the current position of the block being moved.

## 7Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices $\left(S+E\right)$ and $\left(T+F\right)$, where
 $‖E‖2 = O⁡ε ‖S‖2 and ‖F‖2= O⁡ε ‖T‖2 ,$
and $\epsilon$ is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error bounds for the generalized nonsymmetric eigenproblem.

## 8Parallelism and Performance

f08ytc is not threaded in any implementation.

The real analogue of this function is f08yfc.

## 10Example

This example exchanges rows 4 and 1 of the matrix pair $\left(S,T\right)$, where
 $S = ( 4.0+4.0i 1.0+1.0i 1.0+1.0i 2.0-1.0i 0.0i+0.0 2.0+1.0i 1.0+1.0i 1.0+1.0i 0.0i+0.0 0.0i+0.0 2.0-1.0i 1.0+1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 6.0-2.0i )$
and
 $T = ( 2.0 1.0+1.0i 1.0+1.0i 3.0-1.0i 0.0 1.0i+0.0 2.0+1.0i 1.0+1.0i 0.0 0.0i+0.0 1.0i+0.0 1.0+1.0i 0.0 0.0i+0.0 0.0i+0.0 2.0i+0.0 ) .$

### 10.1Program Text

Program Text (f08ytce.c)

### 10.2Program Data

Program Data (f08ytce.d)

### 10.3Program Results

Program Results (f08ytce.r)