# NAG CL Interfacef08kuc (zunmbr)

Settings help

CL Name Style:

## 1Purpose

f08kuc multiplies an arbitrary complex $m×n$ matrix $C$ by one of the complex unitary matrices $Q$ or $P$ which were determined by f08ksc when reducing a complex matrix to bidiagonal form.

## 2Specification

 #include
 void f08kuc (Nag_OrderType order, Nag_VectType vect, Nag_SideType side, Nag_TransType trans, Integer m, Integer n, Integer k, const Complex a[], Integer pda, const Complex tau[], Complex c[], Integer pdc, NagError *fail)
The function may be called by the names: f08kuc, nag_lapackeig_zunmbr or nag_zunmbr.

## 3Description

f08kuc is intended to be used after a call to f08ksc, which reduces a complex rectangular matrix $A$ to real bidiagonal form $B$ by a unitary transformation: $A=QB{P}^{\mathrm{H}}$. f08ksc represents the matrices $Q$ and ${P}^{\mathrm{H}}$ as products of elementary reflectors.
This function may be used to form one of the matrix products
 $QC , QHC , CQ , CQH , PC , PHC , CP ​ or ​ CPH ,$
overwriting the result on $C$ (which may be any complex rectangular matrix).

## 4References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

Note: in the descriptions below, $\mathit{r}$ denotes the order of $Q$ or ${P}^{\mathrm{H}}$: if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$, $\mathit{r}={\mathbf{m}}$ and if ${\mathbf{side}}=\mathrm{Nag_RightSide}$, $\mathit{r}={\mathbf{n}}$.
1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{vect}$Nag_VectType Input
On entry: indicates whether $Q$ or ${Q}^{\mathrm{H}}$ or $P$ or ${P}^{\mathrm{H}}$ is to be applied to $C$.
${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$
$Q$ or ${Q}^{\mathrm{H}}$ is applied to $C$.
${\mathbf{vect}}=\mathrm{Nag_ApplyP}$
$P$ or ${P}^{\mathrm{H}}$ is applied to $C$.
Constraint: ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$ or $\mathrm{Nag_ApplyP}$.
3: $\mathbf{side}$Nag_SideType Input
On entry: indicates how $Q$ or ${Q}^{\mathrm{H}}$ or $P$ or ${P}^{\mathrm{H}}$ is to be applied to $C$.
${\mathbf{side}}=\mathrm{Nag_LeftSide}$
$Q$ or ${Q}^{\mathrm{H}}$ or $P$ or ${P}^{\mathrm{H}}$ is applied to $C$ from the left.
${\mathbf{side}}=\mathrm{Nag_RightSide}$
$Q$ or ${Q}^{\mathrm{H}}$ or $P$ or ${P}^{\mathrm{H}}$ is applied to $C$ from the right.
Constraint: ${\mathbf{side}}=\mathrm{Nag_LeftSide}$ or $\mathrm{Nag_RightSide}$.
4: $\mathbf{trans}$Nag_TransType Input
On entry: indicates whether $Q$ or $P$ or ${Q}^{\mathrm{H}}$ or ${P}^{\mathrm{H}}$ is to be applied to $C$.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$Q$ or $P$ is applied to $C$.
${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$
${Q}^{\mathrm{H}}$ or ${P}^{\mathrm{H}}$ is applied to $C$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ or $\mathrm{Nag_ConjTrans}$.
5: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $C$.
Constraint: ${\mathbf{m}}\ge 0$.
6: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $C$.
Constraint: ${\mathbf{n}}\ge 0$.
7: $\mathbf{k}$Integer Input
On entry: if ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$, the number of columns in the original matrix $A$.
If ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$, the number of rows in the original matrix $A$.
Constraint: ${\mathbf{k}}\ge 0$.
8: $\mathbf{a}\left[\mathit{dim}\right]$const Complex Input
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)\right)$ when ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathit{r}×{\mathbf{pda}}\right)$ when ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×\mathit{r}\right)$ when ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)×{\mathbf{pda}}\right)$ when ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: details of the vectors which define the elementary reflectors, as returned by f08ksc.
9: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$,
• if ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathit{r}\right)$;
• if ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$,
• if ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)\right)$;
• if ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathit{r}\right)$.
10: $\mathbf{tau}\left[\mathit{dim}\right]$const Complex Input
Note: the dimension, dim, of the array tau must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)\right)$.
On entry: further details of the elementary reflectors, as returned by f08ksc in its argument tauq if ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$, or in its argument taup if ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$.
11: $\mathbf{c}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array c must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdc}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pdc}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $C$ is stored in
• ${\mathbf{c}}\left[\left(j-1\right)×{\mathbf{pdc}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{c}}\left[\left(i-1\right)×{\mathbf{pdc}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the matrix $C$.
On exit: c is overwritten by $QC$ or ${Q}^{\mathrm{H}}C$ or $CQ$ or ${C}^{\mathrm{H}}Q$ or $PC$ or ${P}^{\mathrm{H}}C$ or $CP$ or ${C}^{\mathrm{H}}P$ as specified by vect, side and trans.
12: $\mathbf{pdc}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array c.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
13: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_ENUM_INT_2
On entry, ${\mathbf{vect}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{k}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)\right)$;
if ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathit{r}\right)$.
On entry, ${\mathbf{vect}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{k}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{vect}}=\mathrm{Nag_ApplyQ}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathit{r}\right)$;
if ${\mathbf{vect}}=\mathrm{Nag_ApplyP}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(\mathit{r},{\mathbf{k}}\right)\right)$.
NE_INT
On entry, ${\mathbf{k}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{k}}\ge 0$.
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdc}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdc}}>0$.
NE_INT_2
On entry, ${\mathbf{pdc}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pdc}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The computed result differs from the exact result by a matrix $E$ such that
 $‖E‖2 = O(ε) ‖C‖2 ,$
where $\epsilon$ is the machine precision.

## 8Parallelism and Performance

f08kuc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f08kuc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of real floating-point operations is approximately
• if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$ and $m\ge k$, $8nk\left(2m-k\right)$;
• if ${\mathbf{side}}=\mathrm{Nag_RightSide}$ and $n\ge k$, $8mk\left(2n-k\right)$;
• if ${\mathbf{side}}=\mathrm{Nag_LeftSide}$ and $m, $8{m}^{2}n$;
• if ${\mathbf{side}}=\mathrm{Nag_RightSide}$ and $n, $8m{n}^{2}$,
where $k$ is the value of the argument k.
The real analogue of this function is f08kgc.

## 10Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a matrix $A$ may be preceded by a $QR$ or $LQ$ factorization of $A$.
In the first example, $m>n$, and
 $A = ( 0.96-0.81i -0.03+0.96i -0.91+2.06i -0.05+0.41i -0.98+1.98i -1.20+0.19i -0.66+0.42i -0.81+0.56i 0.62-0.46i 1.01+0.02i 0.63-0.17i -1.11+0.60i -0.37+0.38i 0.19-0.54i -0.98-0.36i 0.22-0.20i 0.83+0.51i 0.20+0.01i -0.17-0.46i 1.47+1.59i 1.08-0.28i 0.20-0.12i -0.07+1.23i 0.26+0.26i ) .$
The function first performs a $QR$ factorization of $A$ as $A={Q}_{a}R$ and then reduces the factor $R$ to bidiagonal form $B$: $R={Q}_{b}B{P}^{\mathrm{H}}$. Finally it forms ${Q}_{a}$ and calls f08kuc to form $Q={Q}_{a}{Q}_{b}$.
In the second example, $m, and
 $A = ( 0.28-0.36i 0.50-0.86i -0.77-0.48i 1.58+0.66i -0.50-1.10i -1.21+0.76i -0.32-0.24i -0.27-1.15i 0.36-0.51i -0.07+1.33i -0.75+0.47i -0.08+1.01i ) .$
The function first performs an $LQ$ factorization of $A$ as $A=L{P}_{a}^{\mathrm{H}}$ and then reduces the factor $L$ to bidiagonal form $B$: $L=QB{P}_{b}^{\mathrm{H}}$. Finally it forms ${P}_{b}^{\mathrm{H}}$ and calls f08kuc to form ${P}^{\mathrm{H}}={P}_{b}^{\mathrm{H}}{P}_{a}^{\mathrm{H}}$.

### 10.1Program Text

Program Text (f08kuce.c)

### 10.2Program Data

Program Data (f08kuce.d)

### 10.3Program Results

Program Results (f08kuce.r)