NAG Library Manual, Mark 28.3
```
nagcpp::opt::handle_solve_bounds_foas Example

E04KF, First order method for bound-constrained problems

Status: converged, an optimal solution was found
Value of the objective             4.00000E-02
Norm of projected direction        0.00000E+00

Primal variables:
idx   Lower bound       Value       Upper bound
1  -1.00000E+00    8.00000E-01    8.00000E-01
2  -2.00000E+00    6.40000E-01    2.00000E+00

Box bounds dual variables:
idx   Lower bound       Value       Upper bound       Value
1  -1.00000E+00    0.00000E+00    8.00000E-01    4.00000E-01
2  -2.00000E+00    0.00000E+00    2.00000E+00    0.00000E+00
Solution found:
Objective function value at solution:   4.0e-02

Monitoring Information:

----------------------------------------------------------
E04KF, First order method for bound-constrained problems
----------------------------------------------------------

Begin of Options
Print File                    =                   6     * d
Print Level                   =                   1     * U
Print Options                 =                  No     * U
Print Solution                =                 All     * U
Monitoring File               =                  50     * U
Monitoring Level              =                   3     * U
Foas Monitor Frequency        =                   0     * d
Foas Print Frequency          =                   5     * U

Infinite Bound Size           =         1.00000E+20     * d
Stats Time                    =                  No     * d
Time Limit                    =         1.00000E+06     * d
Verify Derivatives            =                  No     * d

Foas Estimate Derivatives     =                  No     * d
Foas Finite Diff Interval     =         1.05367E-08     * d
Foas Iteration Limit          =            10000000     * d
Foas Memory                   =                  11     * d
Foas Progress Tolerance       =         1.08158E-12     * d
Foas Rel Stop Tolerance       =         1.08158E-12     * d
Foas Restart Factor           =         6.00000E+00     * d
Foas Slow Tolerance           =         1.01316E-02     * d
Foas Stop Tolerance           =         1.00000E-06     * d
Foas Tolerance Norm           =            Infinity     * d
End of Options

Problem Statistics
No of variables                  2
free (unconstrained)           0
bounded                        2
Objective function       Nonlinear

-------------------------------------------------------------------------------
iters |  objective |  optim  |   dir   | progrss | it|   step  |    nf|    ng
-------------------------------------------------------------------------------
0  8.50000E+01  1.80E+02  3.90E+00  1.00E+00       Start        1      1
3  4.00000E+00  0.00E+00  1.80E+00  4.05E+01 NPG  1.00E+00      3      2
5  3.99156E+00  2.80E+00  2.80E+00  7.05E-03     Switch CG     12      3
7  3.97076E+00  5.76E+00  1.79E+00  6.84E-03  CG  6.24E-03     17      6
12  1.97065E+00  6.49E+00  1.88E+00  5.66E-02 LCG  1.75E-01     29     13
17  8.94996E-01  8.97E+00  2.02E+00  3.25E-01 LCG  1.41E+00     39     18
22  2.51003E-01  2.68E+00  1.75E+00  2.54E-01 LCG  3.63E-01     52     27
27  5.37636E-02  3.33E+00  1.80E+00  2.55E-01 LCG  3.25E-01     62     32
28  4.02960E-02  3.44E-01  3.44E-01  1.59E-01 LCG  1.33E-01     65     34
32  4.00000E-02  0.00E+00  0.00E+00  4.68E-03  CG  5.00E-03     75     36
-------------------------------------------------------------------------------
Status: converged, an optimal solution was found
-------------------------------------------------------------------------------
Value of the objective             4.00000E-02
Norm of projected direction        0.00000E+00
Iterations                                  32
Function evaluations                        75
FD func. evaluations                         0
NPG function calls                        18
CG function calls                          9
LCG function calls                        48