```/* nag_lapacklin_dgeequ (f07afc) Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
*
* Mark 27.0, 2019.
*/

#include <stdio.h>
#include <nag.h>

int main(void)
{
/* Scalars */
double amax, big, colcnd, rowcnd, small;
Integer i, j, m, n, pda;
Integer exit_status = 0;

/* Arrays */
double *a = 0, *c = 0, *r = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_Boolean scaled = Nag_FALSE;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_lapacklin_dgeequ (f07afc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%*[^\n]", &n);
if (n < 0) {
printf("Invalid n\n");
exit_status = 1;
return exit_status;
}

m = n;

#ifdef NAG_COLUMN_MAJOR
pda = m;
#else
pda = n;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||
!(c = NAG_ALLOC(n, double)) || !(r = NAG_ALLOC(m, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Read the N by N matrix A from data file */
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
scanf("%lf", &A(i, j));
scanf("%*[^\n]");

/* Print the matrix A using nag_file_print_matrix_real_gen (x04cac) */
fflush(stdout);
nag_file_print_matrix_real_gen(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a,
pda, "Matrix A", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_real_gen (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
printf("\n");

/* Compute row and column scaling factors using nag_lapacklin_dgeequ (f07afc) */
nag_lapacklin_dgeequ(order, m, n, a, pda, r, c, &rowcnd, &colcnd, &amax, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapacklin_dgeequ (f07afc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print rowcnd, colcnd, amax and the scale factors */
printf("rowcnd = %10.1e, colcnd = %10.1e, amax = %10.1e\n\n", rowcnd,
colcnd, amax);

printf("Row scale factors\n");
for (i = 1; i <= n; ++i)
printf("%11.2e%s", r[i - 1], i % 7 == 0 ? "\n" : " ");

printf("\n\nColumn scale factors\n");
for (i = 1; i <= n; ++i)
printf("%11.2e%s", c[i - 1], i % 7 == 0 ? "\n" : " ");
printf("\n\n");

/* Compute values close to underflow and overflow using
* nag_machine_real_safe (x02amc), nag_machine_precision (x02ajc) and
* nag_machine_model_base (x02bhc)
*/
small = nag_machine_real_safe / nag_machine_precision * nag_machine_model_base;
big = 1.0 / small;
if (colcnd < 0.1) {
scaled = Nag_TRUE;
/* column scale A */
for (j = 1; j <= n; ++j)
for (i = 1; i <= n; ++i)
A(i, j) = A(i, j) * c[j - 1];
}
if (rowcnd < 0.1 || amax < small || amax > big) {
/* row scale A */
scaled = Nag_TRUE;
for (j = 1; j <= n; ++j)
for (i = 1; i <= n; ++i)
A(i, j) = r[i - 1] * A(i, j);
}
if (scaled) {
/* Print the row and column scaled matrix using
* nag_file_print_matrix_real_gen (x04cac)
*/
fflush(stdout);
nag_file_print_matrix_real_gen(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "Scaled matrix", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_real_gen (x04cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
}

END:
NAG_FREE(a);
NAG_FREE(c);
NAG_FREE(r);

return exit_status;
}
```