# NAG FL Interfacef06hpf (zcrot)

## 1Purpose

f06hpf applies a complex plane rotation to two complex vectors.

## 2Specification

Fortran Interface
 Subroutine f06hpf ( n, x, incx, y, incy, c, s)
 Integer, Intent (In) :: n, incx, incy Complex (Kind=nag_wp), Intent (In) :: c, s Complex (Kind=nag_wp), Intent (Inout) :: x(*), y(*)
#include <nag.h>
 void f06hpf_ (const Integer *n, Complex x[], const Integer *incx, Complex y[], const Integer *incy, const Complex *c, const Complex *s)
The routine may be called by the names f06hpf or nagf_blas_zcrot.

## 3Description

f06hpf applies a complex plane rotation to two $n$-element complex vectors $x$ and $y$:
 $xT yT ← c s -s¯ c¯ xT yT .$

None.

## 5Arguments

1: $\mathbf{n}$Integer Input
On entry: $n$, the number of elements in $x$ and $y$.
2: $\mathbf{x}\left(*\right)$Complex (Kind=nag_wp) array Input/Output
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×\left|{\mathbf{incx}}\right|\right)$.
On entry: the $n$-element vector $x$.
If ${\mathbf{incx}}>0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incx}}<0$, ${x}_{\mathit{i}}$ must be stored in ${\mathbf{x}}\left(1-\left({\mathbf{n}}-\mathit{i}\right)×{\mathbf{incx}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of x are not referenced.
On exit: the transformed vector $x$ stored in the array elements used to supply the original vector $x$.
Intermediate elements of x are unchanged.
3: $\mathbf{incx}$Integer Input
On entry: the increment in the subscripts of x between successive elements of $x$.
4: $\mathbf{y}\left(*\right)$Complex (Kind=nag_wp) array Input/Output
Note: the dimension of the array y must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)×\left|{\mathbf{incy}}\right|\right)$.
On entry: the $n$-element vector $y$.
If ${\mathbf{incy}}>0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left(1+\left(\mathit{i}-1\right)×{\mathbf{incy}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
If ${\mathbf{incy}}<0$, ${y}_{\mathit{i}}$ must be stored in ${\mathbf{y}}\left(1-\left({\mathbf{n}}-\mathit{i}\right)×{\mathbf{incy}}\right)$, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Intermediate elements of y are not referenced.
On exit: the transformed vector $y$.
Intermediate elements of y are unchanged.
5: $\mathbf{incy}$Integer Input
On entry: the increment in the subscripts of y between successive elements of $y$.
6: $\mathbf{c}$Complex (Kind=nag_wp) Input
On entry: the value $c$, the cosine of the rotation.
7: $\mathbf{s}$Complex (Kind=nag_wp) Input
On entry: the value $s$, the sine of the rotation.

None.

Not applicable.

## 8Parallelism and Performance

f06hpf is not threaded in any implementation.