# NAG FL Interfacec06rff (fft_​cosine)

## 1Purpose

c06rff computes the discrete Fourier cosine transforms of $m$ sequences of real data values. The elements of each sequence and its transform are stored contiguously.

## 2Specification

Fortran Interface
 Subroutine c06rff ( m, n, x,
 Integer, Intent (In) :: m, n Integer, Intent (Inout) :: ifail Real (Kind=nag_wp), Intent (Inout) :: x(0:n,m)
#include <nag.h>
 void c06rff_ (const Integer *m, const Integer *n, double x[], Integer *ifail)
The routine may be called by the names c06rff or nagf_sum_fft_cosine.

## 3Description

Given $m$ sequences of $n+1$ real data values ${x}_{\mathit{j}}^{\mathit{p}}$, for $\mathit{j}=0,1,\dots ,n$ and $\mathit{p}=1,2,\dots ,m$, c06rff simultaneously calculates the Fourier cosine transforms of all the sequences defined by
 $x^ k p = 2n 12 x0p + ∑ j=1 n-1 xjp × cos jk πn + 12 -1k xnp , k= 0, 1, …, n ​ and ​ p= 1, 2, …, m .$
(Note the scale factor $\sqrt{\frac{2}{n}}$ in this definition.)
This transform is also known as type-I DCT.
Since the Fourier cosine transform defined above is its own inverse, two consecutive calls of c06rff will restore the original data.
The transform calculated by this routine can be used to solve Poisson's equation when the derivative of the solution is specified at both left and right boundaries (see Swarztrauber (1977)).
The routine uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and post-processing stages described in Swarztrauber (1982). Special coding is provided for the factors $2$, $3$, $4$ and $5$.

## 4References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall
Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490–501
Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51–83 Academic Press
Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340–350

## 5Arguments

1: $\mathbf{m}$Integer Input
On entry: $m$, the number of sequences to be transformed.
Constraint: ${\mathbf{m}}\ge 1$.
2: $\mathbf{n}$Integer Input
On entry: one less than the number of real values in each sequence, i.e., the number of values in each sequence is $n+1$.
Constraint: ${\mathbf{n}}\ge 1$.
3: $\mathbf{x}\left(0:{\mathbf{n}},{\mathbf{m}}\right)$Real (Kind=nag_wp) array Input/Output
On entry: the data values of the $\mathit{p}$th sequence to be transformed, denoted by ${x}_{\mathit{j}}^{\mathit{p}}$, for $\mathit{j}=0,1,\dots ,n$ and $\mathit{p}=1,2,\dots ,m$, must be stored in ${\mathbf{x}}\left(j,p\right)$.
On exit: the $\left(n+1\right)$ components of the $\mathit{p}$th Fourier cosine transform, denoted by ${\stackrel{^}{x}}_{\mathit{k}}^{\mathit{p}}$, for $\mathit{k}=0,1,\dots ,n$ and $\mathit{p}=1,2,\dots ,m$, are stored in ${\mathbf{x}}\left(k,p\right)$, overwriting the corresponding original values.
4: $\mathbf{ifail}$Integer Input/Output
On entry: ifail must be set to $0$, . If you are unfamiliar with this argument you should refer to Section 4 in the Introduction to the NAG Library FL Interface for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value is recommended. If the output of error messages is undesirable, then the value $1$ is recommended. Otherwise, if you are not familiar with this argument, the recommended value is $0$. When the value is used it is essential to test the value of ifail on exit.
On exit: ${\mathbf{ifail}}={\mathbf{0}}$ unless the routine detects an error or a warning has been flagged (see Section 6).

## 6Error Indicators and Warnings

If on entry ${\mathbf{ifail}}=0$ or $-1$, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
${\mathbf{ifail}}=1$
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 1$.
${\mathbf{ifail}}=2$
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 1$.
${\mathbf{ifail}}=3$
An internal error has occurred in this routine. Check the routine call and any array sizes. If the call is correct then please contact NAG for assistance.
${\mathbf{ifail}}=-99$
See Section 7 in the Introduction to the NAG Library FL Interface for further information.
${\mathbf{ifail}}=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library FL Interface for further information.
${\mathbf{ifail}}=-999$
Dynamic memory allocation failed.
See Section 9 in the Introduction to the NAG Library FL Interface for further information.

## 7Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

## 8Parallelism and Performance

c06rff is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The time taken by c06rff is approximately proportional to $nm\mathrm{log}\left(n\right)$, but also depends on the factors of $n$. c06rff is fastest if the only prime factors of $n$ are $2$, $3$ and $5$, and is particularly slow if $n$ is a large prime, or has large prime factors. Workspace of order $\mathit{O}\left(n\right)$ is internally allocated by this routine.

## 10Example

This example reads in sequences of real data values and prints their Fourier cosine transforms (as computed by c06rff). It then calls c06rff again and prints the results which may be compared with the original sequence.

### 10.1Program Text

Program Text (c06rffe.f90)

### 10.2Program Data

Program Data (c06rffe.d)

### 10.3Program Results

Program Results (c06rffe.r)