# NAG CL Interfaces30jbc (opt_​jumpdiff_​merton_​greeks)

## 1Purpose

s30jbc computes the European option price together with its sensitivities (Greeks) using the Merton jump-diffusion model.

## 2Specification

 #include
 void s30jbc (Nag_OrderType order, Nag_CallPut option, Integer m, Integer n, const double x[], double s, const double t[], double sigma, double r, double lambda, double jvol, double p[], double delta[], double gamma[], double vega[], double theta[], double rho[], double vanna[], double charm[], double speed[], double colour[], double zomma[], double vomma[], NagError *fail)
The function may be called by the names: s30jbc, nag_specfun_opt_jumpdiff_merton_greeks or nag_jumpdiff_merton_greeks.

## 3Description

s30jbc uses Merton's jump-diffusion model (Merton (1976)) to compute the price of a European option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. Merton's model assumes that the asset price is described by a Brownian motion with drift, as in the Black–Scholes–Merton case, together with a compound Poisson process to model the jumps. The corresponding stochastic differential equation is,
 $dS S = α-λk dt + σ^ dWt + dqt .$
Here $\alpha$ is the instantaneous expected return on the asset price, $S$; ${\stackrel{^}{\sigma }}^{2}$ is the instantaneous variance of the return when the Poisson event does not occur; ${dW}_{t}$ is a standard Brownian motion; ${q}_{t}$ is the independent Poisson process and $k=E\left[Y-1\right]$ where $Y-1$ is the random variable change in the stock price if the Poisson event occurs and $E$ is the expectation operator over the random variable $Y$.
This leads to the following price for a European option (see Haug (2007))
 $Pcall = ∑ j=0 ∞ e-λT λTj j! Cj S, X, T, r, σj′ ,$
where $T$ is the time to expiry; $X$ is the strike price; $r$ is the annual risk-free interest rate; ${C}_{j}\left(S,X,T,r,{\sigma }_{j}^{\prime }\right)$ is the Black–Scholes–Merton option pricing formula for a European call (see s30aac).
 $σj′ = z2 + δ2 j T , z2 = σ2 - λ δ2 , δ2 = γ σ2 λ ,$
where $\sigma$ is the total volatility including jumps; $\lambda$ is the expected number of jumps given as an average per year; $\gamma$ is the proportion of the total volatility due to jumps.
The value of a put is obtained by substituting the Black–Scholes–Merton put price for ${C}_{j}\left(S,X,T,r,{\sigma }_{j}^{\prime }\right)$.
The option price ${P}_{ij}=P\left(X={X}_{i},T={T}_{j}\right)$ is computed for each strike price in a set ${X}_{i}$, $i=1,2,\dots ,m$, and for each expiry time in a set ${T}_{j}$, $j=1,2,\dots ,n$.

## 4References

Haug E G (2007) The Complete Guide to Option Pricing Formulas (2nd Edition) McGraw-Hill
Merton R C (1976) Option pricing when underlying stock returns are discontinuous Journal of Financial Economics 3 125–144

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{option}$Nag_CallPut Input
On entry: determines whether the option is a call or a put.
${\mathbf{option}}=\mathrm{Nag_Call}$
A call; the holder has a right to buy.
${\mathbf{option}}=\mathrm{Nag_Put}$
A put; the holder has a right to sell.
Constraint: ${\mathbf{option}}=\mathrm{Nag_Call}$ or $\mathrm{Nag_Put}$.
3: $\mathbf{m}$Integer Input
On entry: the number of strike prices to be used.
Constraint: ${\mathbf{m}}\ge 1$.
4: $\mathbf{n}$Integer Input
On entry: the number of times to expiry to be used.
Constraint: ${\mathbf{n}}\ge 1$.
5: $\mathbf{x}\left[{\mathbf{m}}\right]$const double Input
On entry: ${\mathbf{x}}\left[i-1\right]$ must contain ${X}_{\mathit{i}}$, the $\mathit{i}$th strike price, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
Constraint: ${\mathbf{x}}\left[\mathit{i}-1\right]\ge z\text{​ and ​}{\mathbf{x}}\left[\mathit{i}-1\right]\le 1/z$, where $z={\mathbf{nag_real_safe_small_number}}$, the safe range parameter, for $\mathit{i}=1,2,\dots ,{\mathbf{m}}$.
6: $\mathbf{s}$double Input
On entry: $S$, the price of the underlying asset.
Constraint: ${\mathbf{s}}\ge z\text{​ and ​}{\mathbf{s}}\le 1.0/z$, where $z={\mathbf{nag_real_safe_small_number}}$, the safe range parameter.
7: $\mathbf{t}\left[{\mathbf{n}}\right]$const double Input
On entry: ${\mathbf{t}}\left[i-1\right]$ must contain ${T}_{\mathit{i}}$, the $\mathit{i}$th time, in years, to expiry, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
Constraint: ${\mathbf{t}}\left[\mathit{i}-1\right]\ge z$, where $z={\mathbf{nag_real_safe_small_number}}$, the safe range parameter, for $\mathit{i}=1,2,\dots ,{\mathbf{n}}$.
8: $\mathbf{sigma}$double Input
On entry: $\sigma$, the annual total volatility, including jumps.
Constraint: ${\mathbf{sigma}}>0.0$.
9: $\mathbf{r}$double Input
On entry: $r$, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as $0.05$.
Constraint: ${\mathbf{r}}\ge 0.0$.
10: $\mathbf{lambda}$double Input
On entry: $\lambda$, the number of expected jumps per year.
Constraint: ${\mathbf{lambda}}>0.0$.
11: $\mathbf{jvol}$double Input
On entry: the proportion of the total volatility associated with jumps.
Constraint: $0.0\le {\mathbf{jvol}}<1.0$.
12: $\mathbf{p}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{P}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{p}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{p}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{P}}\left(i,j\right)$ contains ${P}_{ij}$, the option price evaluated for the strike price ${{\mathbf{x}}}_{i}$ at expiry ${{\mathbf{t}}}_{j}$ for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
13: $\mathbf{delta}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: the $\left(i,j\right)$th element of the matrix is stored in
• ${\mathbf{delta}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{delta}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: the $m×n$ array delta contains the sensitivity, $\frac{\partial P}{\partial S}$, of the option price to change in the price of the underlying asset.
14: $\mathbf{gamma}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: the $\left(i,j\right)$th element of the matrix is stored in
• ${\mathbf{gamma}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{gamma}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: the $m×n$ array gamma contains the sensitivity, $\frac{{\partial }^{2}P}{\partial {S}^{2}}$, of delta to change in the price of the underlying asset.
15: $\mathbf{vega}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{VEGA}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{vega}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{vega}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{VEGA}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in the volatility of the underlying asset, i.e., $\frac{\partial {P}_{ij}}{\partial \sigma }$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
16: $\mathbf{theta}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{THETA}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{theta}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{theta}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{THETA}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in time, i.e., $-\frac{\partial {P}_{ij}}{\partial T}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$, where $b=r-q$.
17: $\mathbf{rho}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{RHO}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{rho}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{rho}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{RHO}}\left(i,j\right)$, contains the first-order Greek measuring the sensitivity of the option price ${P}_{ij}$ to change in the annual risk-free interest rate, i.e., $-\frac{\partial {P}_{ij}}{\partial r}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
18: $\mathbf{vanna}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{VANNA}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{vanna}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{vanna}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{VANNA}}\left(i,j\right)$, contains the second-order Greek measuring the sensitivity of the first-order Greek ${\Delta }_{ij}$ to change in the volatility of the asset price, i.e., $-\frac{\partial {\Delta }_{ij}}{\partial T}=-\frac{{\partial }^{2}{P}_{ij}}{\partial S\partial \sigma }$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
19: $\mathbf{charm}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{CHARM}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{charm}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{charm}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{CHARM}}\left(i,j\right)$, contains the second-order Greek measuring the sensitivity of the first-order Greek ${\Delta }_{ij}$ to change in the time, i.e., $-\frac{\partial {\Delta }_{ij}}{\partial T}=-\frac{{\partial }^{2}{P}_{ij}}{\partial S\partial T}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
20: $\mathbf{speed}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{SPEED}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{speed}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{speed}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{SPEED}}\left(i,j\right)$, contains the third-order Greek measuring the sensitivity of the second-order Greek ${\Gamma }_{ij}$ to change in the price of the underlying asset, i.e., $-\frac{\partial {\Gamma }_{ij}}{\partial S}=-\frac{{\partial }^{3}{P}_{ij}}{\partial {S}^{3}}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
21: $\mathbf{colour}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{COLOUR}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{colour}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{colour}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{COLOUR}}\left(i,j\right)$, contains the third-order Greek measuring the sensitivity of the second-order Greek ${\Gamma }_{ij}$ to change in the time, i.e., $-\frac{\partial {\Gamma }_{ij}}{\partial T}=-\frac{{\partial }^{3}{P}_{ij}}{\partial S\partial T}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
22: $\mathbf{zomma}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{ZOMMA}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{zomma}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{zomma}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{ZOMMA}}\left(i,j\right)$, contains the third-order Greek measuring the sensitivity of the second-order Greek ${\Gamma }_{ij}$ to change in the volatility of the underlying asset, i.e., $-\frac{\partial {\Gamma }_{ij}}{\partial \sigma }=-\frac{{\partial }^{3}{P}_{ij}}{\partial {S}^{2}\partial \sigma }$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
23: $\mathbf{vomma}\left[{\mathbf{m}}×{\mathbf{n}}\right]$double Output
Note: where ${\mathbf{VOMMA}}\left(i,j\right)$ appears in this document, it refers to the array element
• ${\mathbf{vomma}}\left[\left(j-1\right)×{\mathbf{m}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{vomma}}\left[\left(i-1\right)×{\mathbf{n}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: ${\mathbf{VOMMA}}\left(i,j\right)$, contains the second-order Greek measuring the sensitivity of the first-order Greek ${\Delta }_{ij}$ to change in the volatility of the underlying asset, i.e., $-\frac{\partial {\Delta }_{ij}}{\partial \sigma }=-\frac{{\partial }^{2}{P}_{ij}}{\partial {\sigma }^{2}}$, for $i=1,2,\dots ,{\mathbf{m}}$ and $j=1,2,\dots ,{\mathbf{n}}$.
24: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 1$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 1$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.
NE_REAL
On entry, ${\mathbf{jvol}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{jvol}}\ge 0.0$ and ${\mathbf{jvol}}<1.0$.
On entry, ${\mathbf{lambda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{lambda}}>0.0$.
On entry, ${\mathbf{r}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{r}}\ge 0.0$.
On entry, ${\mathbf{s}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{s}}\ge 〈\mathit{\text{value}}〉$ and ${\mathbf{s}}\le 〈\mathit{\text{value}}〉$.
On entry, ${\mathbf{sigma}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{sigma}}>0.0$.
NE_REAL_ARRAY
On entry, ${\mathbf{t}}\left[〈\mathit{\text{value}}〉\right]=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{t}}\left[i\right]\ge 〈\mathit{\text{value}}〉$.
On entry, ${\mathbf{x}}\left[〈\mathit{\text{value}}〉\right]=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{x}}\left[i\right]\ge 〈\mathit{\text{value}}〉$ and ${\mathbf{x}}\left[i\right]\le 〈\mathit{\text{value}}〉$.

## 7Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, $\Phi$, occurring in ${C}_{j}$. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see s15abc and s15adc). An accuracy close to machine precision can generally be expected.

## 8Parallelism and Performance

s30jbc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

None.

## 10Example

This example computes the price of two European calls with jumps. The time to expiry is $6$ months, the stock price is $100$ and strike prices are $80$ and $90$ respectively. The number of jumps per year is $5$ and the percentage of the total volatility due to jumps is $25%$. The risk-free interest rate is $8%$ per year while the total volatility is $25%$ per year.

### 10.1Program Text

Program Text (s30jbce.c)

### 10.2Program Data

Program Data (s30jbce.d)

### 10.3Program Results

Program Results (s30jbce.r)