# NAG CL InterfaceA02 (Complex)Complex Arithmetic

Settings help

CL Name Style:

## 1Scope of the Chapter

The functions provided in this chapter perform basic complex arithmetic operations, taking precautions to avoid unnecessary overflow or underflow in intermediate results.
See Section 3.1.1 in the Introduction to the NAG Library CL Interface for details of how complex numbers are represented in the NAG C Library.

## 2Function Return Types and Argument Lists

```Complex nag_complex(double x, double y)
double nag_complex_real(Complex z)
double nag_complex_imag(Complex z)
Complex nag_complex_subtract(Complex z1, Complex z2)
Complex nag_complex_multiply(Complex z1, Complex z2)
Complex nag_complex_divide(Complex z1, Complex z2)
Complex nag_complex_negate(Complex z)
Complex nag_complex_conjg(Complex z)
Boolean nag_complex_equal(Complex z1, Complex z2)
Boolean nag_complex_not_equal(Complex z1, Complex z2)
double nag_complex_arg(Complex z)
double nag_complex_abs(Complex z)
Complex nag_complex_sqrt(Complex z)
Complex nag_complex_i_power(Complex z, Integer i)
Complex nag_complex_r_power(Complex z1, double z2)
Complex nag_complex_c_power(Complex z1, Complex z2)
Complex nag_complex_log(Complex z)
Complex nag_complex_exp(Complex z)
Complex nag_complex_sin(Complex z)
Complex nag_complex_cos(Complex z)
Complex nag_complex_tan(Complex z)```

## 3Functionality Index

 Complex numbers,
 abs($z$) a02dbc
 arg($z$) a02dac
 comparison,
 equality a02cgc
 inequality a02chc
 complex power a02dfc
 conjugate a02cfc
 cos($z$) a02dkc
 division a02cdc
 exp($z$) a02dhc
 imaginary part a02bcc
 integer power a02ddc
 log($z$) a02dgc
 multiplication a02ccc
 negation a02cec
 real and imaginary parts a02bac
 real part a02bbc
 real power a02dec
 sin($z$) a02djc
 sqrt($z$) a02dcc
 subtraction a02cbc
 tan($z$) a02dlc

None.

None.