```/* D01RG_P0W_F C++ Header Example Program.
*
* Copyright 2019 Numerical Algorithms Group.
* Mark 27, 2019.
*/

#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nagx07.h>
#include <string>
#include <iostream>
using namespace std;

extern "C"
{
static void NAG_CALL f(void * &ad_handle,
const double x[],
const Integer &nx,
double fv[],
Integer &iflag,
Integer iuser[],
double ruser[]);
}

int main(void)
{
// Scalars
int               exit_status = 0;

cout << "D01RG_P0W_F C++ Header Example Program Results\n\n";

// The example function can raise various exceptions - it contains
// a division by zero and a log singularity - although its integral
// is well behaved.

Integer exmode[3], exmode_old[3];
nag_get_ieee_exception_mode(exmode_old);
// Save the original halting mode.

// Turn exception halting mode off for the three common exceptions.
for (int i=0; i<3; i++) {
exmode[i] = 0;
}
nag_set_ieee_exception_mode(exmode);

// Skip first line of data file
string mystr;
getline (cin, mystr);

double  a, b, epsabs, epsrel;
cin >> a;
cin >> b;
cin >> epsabs;
cin >> epsrel;

// Call the passive routine
Integer ifail = 0;
double  dinest, errest, ruser[1];
Integer nevals, iuser[1];
ifail = -1;
iuser,ruser,ifail);
if (ifail<0) {
cout << "\n ** d01rg_p0w_f_ failed error exit ifail = " << ifail << endl;
goto END;
}
// Print inputs and primal outputs.
cout << "\n lower limit of integration (a) = " << a << endl;
cout << " upper limit of integration (b) = " << b << endl;
cout << " absolute accuracy requested    = " << epsabs << endl;
cout << " relative accuracy requested    = " << epsrel << endl;
cout.setf(ios::scientific,ios::floatfield);
cout.precision(4);
if (ifail >= 0) {
cout << "\n approximation to the integral  : " << dinest << endl;
cout << " estimate of the absolute error : " << errest << endl;
cout << " number of function evaluations : " << nevals << endl;
}

END:

// Restore the original halting mode
nag_set_ieee_exception_mode(exmode_old);

return exit_status;
}

static void NAG_CALL f(void * &ad_handle,
const double x[],
const Integer &nx,
double fv[],
Integer &iflag,
Integer iuser[],
double ruser[])
{
double tmp1, tmp2;
for (int i=0; i<nx; i++) {
tmp1 = 10.0*(1.0-x[i]);
tmp2 = sin(x[i])/x[i];
fv[i] = tmp2*log(tmp1);
}
return;
}
```