```    Program c05rd_a1w_fe
!     C05RD_A1W_F Example Main Program

!     .. Use Statements ..
Use iso_c_binding, Only: c_ptr
x10aa_a1w_f, x10ab_a1w_f, x10za_a1w_f,          &
Assignment (=), Operator (-), Operator (+),     &
Operator (*)
Use nag_library, Only: nag_wp, x02ajf, x04caf
!     .. Implicit None Statement ..
Implicit None
!     .. Parameters ..
Integer, Parameter               :: mode = 2, n = 7, nout = 6
!     .. Local Scalars ..
Integer                          :: i, ifail, irevcm
!     .. Local Arrays ..
Type (nagad_a1w_w_rtype), Allocatable :: diag(:), fjac(:,:), fvec(:),    &
qtf(:), r(:), rwsav(:), x(:)
Real (Kind=nag_wp), Allocatable  :: dr(:,:)
Integer, Allocatable             :: iwsav(:)
!     .. Executable Statements ..

Write (nout,*) 'C05RD_A1W_F Example Program Results'

Allocate (diag(n),fjac(n,n),fvec(n),qtf(n),r(n*(n+                       &
1)/2),x(n),rwsav(4*n+10),iwsav(17),dr(n,5))

!     The following starting values provide a rough solution.
x(1:n) = -1.0_nag_wp
x(1:n)%tapeindex = 0.0_nag_wp

Call x10za_a1w_f

!     Create AD configuration data object
ifail = 0

ruser(1) = -1.0_nag_wp
ruser(2) = 3.0_nag_wp
ruser(3) = -2.0_nag_wp
ruser(4) = -2.0_nag_wp
ruser(5) = -1.0_nag_wp
ruser(1:5)%tapeindex = 0

!     Register variables to differentiate w.r.t.

xtol = sqrt(x02ajf())
diag(1:n) = 1.0_nag_wp
factor = 100._nag_wp
irevcm = 0

revcomm: Do

ifail = 0
r,qtf,iwsav,rwsav,ifail)

Select Case (irevcm)
Case (1)
!         Monitoring exit.
Cycle revcomm
Case (2)
Do i = 1, n
fvec(i) = (ruser(2)+ruser(3)*x(i))*x(i) - ruser(5)
End Do
Do i = 2, n
fvec(i) = fvec(i) + ruser(1)*x(i-1)
End Do
Do i = 1, n - 1
fvec(i) = fvec(i) + ruser(4)*x(i+1)
End Do
Case (3)
fjac(1:n,1:n) = 0.0_nag_wp
fjac(1,1) = ruser(2) + 2.0_nag_wp*ruser(3)*x(1)
fjac(1,2) = ruser(4)
Do i = 2, n - 1
fjac(i,i-1) = ruser(1)
fjac(i,i) = ruser(2) + 2.0_nag_wp*ruser(3)*x(i)
fjac(i,i+1) = ruser(4)
End Do
fjac(n,n-1) = ruser(1)
fjac(n,n) = ruser(2) + 2.0_nag_wp*ruser(3)*x(n)
Case Default
Exit revcomm
End Select

End Do revcomm

Write (nout,*) 'Final approximate solution'
Write (nout,99999)(x(i)%value,i=1,n)
99999 Format (1X,3F12.4)

!     Setup evaluation of derivatives via adjoints

Write (nout,*)
Write (nout,*) ' Derivatives calculated: First order adjoints'
Write (nout,*) ' Computational mode    : algorithmic'
Write (nout,*)
Write (nout,*) ' Derivatives are of solution w.r.t function params'
Write (nout,*)

Do i = 1, n
ifail = 0

!       Get derivatives