# NAG CL Interfacef08bnc (zgelsy)

Settings help

CL Name Style:

## 1Purpose

f08bnc computes the minimum norm solution to a complex linear least squares problem
 $minx ‖b-Ax‖2$
using a complete orthogonal factorization of $A$. $A$ is an $m×n$ matrix which may be rank-deficient. Several right-hand side vectors $b$ and solution vectors $x$ can be handled in a single call.

## 2Specification

 #include
 void f08bnc (Nag_OrderType order, Integer m, Integer n, Integer nrhs, Complex a[], Integer pda, Complex b[], Integer pdb, Integer jpvt[], double rcond, Integer *rank, NagError *fail)
The function may be called by the names: f08bnc, nag_lapackeig_zgelsy or nag_zgelsy.

## 3Description

The right-hand side vectors are stored as the columns of the $m×r$ matrix $B$ and the solution vectors in the $n×r$ matrix $X$.
f08bnc first computes a $QR$ factorization with column pivoting
 $AP= Q ( R11 R12 0 R22 ) ,$
with ${R}_{11}$ defined as the largest leading sub-matrix whose estimated condition number is less than $1/{\mathbf{rcond}}$. The order of ${R}_{11}$, rank, is the effective rank of $A$.
Then, ${R}_{22}$ is considered to be negligible, and ${R}_{12}$ is annihilated by orthogonal transformations from the right, arriving at the complete orthogonal factorization
 $AP= Q ( T11 0 0 0 ) Z .$
The minimum norm solution is then
 $X = PZH ( T11-1 Q1H b 0 )$
where ${Q}_{1}$ consists of the first rank columns of $Q$.

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
3: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4: $\mathbf{nrhs}$Integer Input
On entry: $r$, the number of right-hand sides, i.e., the number of columns of the matrices $B$ and $X$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
5: $\mathbf{a}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m×n$ matrix $A$.
On exit: a has been overwritten by details of its complete orthogonal factorization.
6: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
7: $\mathbf{b}\left[\mathit{dim}\right]$Complex Input/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}},{\mathbf{n}}\right)×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m×r$ right-hand side matrix $B$.
On exit: the $n×r$ solution matrix $X$.
8: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}},{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
9: $\mathbf{jpvt}\left[\mathit{dim}\right]$Integer Input/Output
Note: the dimension, dim, of the array jpvt must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: if ${\mathbf{jpvt}}\left[i-1\right]\ne 0$, the $i$th column of $A$ is permuted to the front of $AP$, otherwise column $i$ is a free column.
On exit: if ${\mathbf{jpvt}}\left[i-1\right]=k$, the $i$th column of $AP$ was the $k$th column of $A$.
10: $\mathbf{rcond}$double Input
On entry: used to determine the effective rank of $A$, which is defined as the order of the largest leading triangular sub-matrix ${R}_{11}$ in the $QR$ factorization of $A$, whose estimated condition number is $\text{}<1/{\mathbf{rcond}}$.
Suggested value: if the condition number of a is not known then ${\mathbf{rcond}}=\sqrt{\left(\epsilon \right)/2}$ (where $\epsilon$ is machine precision, see X02AJC) is a good choice. Negative values or values less than machine precision should be avoided since this will cause a to have an effective $\text{rank}=\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)$ that could be larger than its actual rank, leading to meaningless results.
11: $\mathbf{rank}$Integer * Output
On exit: the effective rank of $A$, i.e., the order of the sub-matrix ${R}_{11}$. This is the same as the order of the sub-matrix ${T}_{11}$ in the complete orthogonal factorization of $A$.
12: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{nrhs}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
NE_INT_3
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}},{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

See Section 4.5 of Anderson et al. (1999) for details of error bounds.

## 8Parallelism and Performance

f08bnc is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f08bnc makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The real analogue of this function is f08bac.

## 10Example

This example solves the linear least squares problem
 $minx ‖b-Ax‖2$
for the solution, $x$, of minimum norm, where
 $A = ( 0.47-0.34i -0.40+0.54i 0.60+0.01i 0.80-1.02i -0.32-0.23i -0.05+0.20i -0.26-0.44i -0.43+0.17i 0.35-0.60i -0.52-0.34i 0.87-0.11i -0.34-0.09i 0.89+0.71i -0.45-0.45i -0.02-0.57i 1.14-0.78i -0.19+0.06i 0.11-0.85i 1.44+0.80i 0.07+1.14i )$
and
 $b = ( -1.08-2.59i -2.61-1.49i 3.13-3.61i 7.33-8.01i 9.12+7.63i ) .$
A tolerance of $0.01$ is used to determine the effective rank of $A$.

### 10.1Program Text

Program Text (f08bnce.c)

### 10.2Program Data

Program Data (f08bnce.d)

### 10.3Program Results

Program Results (f08bnce.r)