NAG Library Routine Document
 G01EZF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G01EZF returns the probability associated with the upper tail of the Kolmogorov-Smirnov two sample distribution, via the routine name.

2 Specification

```
FUNCTION GO1EZF (N1, N2, D, IFAIL)
REAL (KIND=nag_wp) G01EZF
INTEGER N1, N2, IFAIL
REAL (KIND=nag_wp) D
```


3 Description

Let $F_{n_{1}}(x)$ and $G_{n_{2}}(x)$ denote the empirical cumulative distribution functions for the two samples, where n_{1} and n_{2} are the sizes of the first and second samples respectively.

The function G01EZF computes the upper tail probability for the Kolmogorov-Smirnov two sample two-sided test statistic $D_{n_{1}, n_{2}}$, where

$$
D_{n_{1}, n_{2}}=\sup _{x}\left|F_{n_{1}}(x)-G_{n_{2}}(x)\right| .
$$

The probability is computed exactly if $n_{1}, n_{2} \leq 10000$ and $\max \left(n_{1}, n_{2}\right) \leq 2500$ using a method given by Kim and Jenrich (1973). For the case where $\min \left(n_{1}, n_{2}\right) \leq 10 \%$ of the $\max \left(n_{1}, n_{2}\right)$ and $\min \left(n_{1}, n_{2}\right) \leq 80$ the Smirnov approximation is used. For all other cases the Kolmogorov approximation is used. These two approximations are discussed in Kim and Jenrich (1973).

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley
Feller W (1948) On the Kolmogorov-Smirnov limit theorems for empirical distributions Ann. Math. Statist. 19 179-181

Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin
Kim P J and Jenrich R I (1973) Tables of exact sampling distribution of the two sample KolmogorovSmirnov criterion $D_{m n}(m<n)$ Selected Tables in Mathematical Statistics 1 80-129 American Mathematical Society

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill
Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist. 19 279-281

5 Arguments

1: N1 - INTEGER Input
On entry: the number of observations in the first sample, n_{1}.
Constraint: $\mathrm{N} 1 \geq 1$.

2: N2 - INTEGER
On entry: the number of observations in the second sample, n_{2}.
Constraint: $\mathrm{N} 2 \geq 1$.
3: $\quad \mathrm{D}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the test statistic $D_{n_{1}, n_{2}}$, for the two sample Kolmogorov-Smirnov goodness-of-fit test, that is the maximum difference between the empirical cumulative distribution functions (CDFs) of the two samples.
Constraint: $0.0 \leq \mathrm{D} \leq 1.0$.
4: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N} 1<1$,
or $\quad \mathrm{N} 2<1$.
IFAIL $=2$
On entry, $\mathrm{D}<0.0$,
or $\quad \mathrm{D}>1.0$.
IFAIL $=3$
The approximation solution did not converge in 500 iterations. A tail probability of 1.0 is returned by G01EZF.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The large sample distributions used as approximations to the exact distribution should have a relative error of less than 5% for most cases.

8 Parallelism and Performance

G01EZF is not threaded in any implementation.

9 Further Comments

The upper tail probability for the one-sided statistics, $D_{n_{1}, n_{2}}^{+}$or $D_{n_{1}, n_{2}}^{-}$, can be approximated by halving the two-sided upper tail probability returned by G01EZF, that is $p / 2$. This approximation to the upper tail probability for either $D_{n_{1}, n_{2}}^{+}$or $D_{n_{1}, n_{2}}^{-}$is good for small probabilities, (e.g., $p \leq 0.10$) but becomes poor for larger probabilities.
The time taken by the routine increases with n_{1} and n_{2}, until $n_{1} n_{2}>10000$ or $\max \left(n_{1}, n_{2}\right) \geq 2500$. At this point one of the approximations is used and the time decreases significantly. The time then increases again modestly with n_{1} and n_{2}.

10 Example

The following example reads in 10 different sample sizes and values for the test statistic $D_{n_{1}, n_{2}}$. The upper tail probability is computed and printed for each case.

10.1 Program Text

```
    Program g01ezfe
        GO1EZF Example Program Text
        Mark 26 Release. NAG Copyright 2016.
        .. Use Statements ..
        Use nag_library, Only: g0lezf, nag_wp
        .. Implicit None Statement ..
        Implicit None
        .. Parameters ..
        Integer, Parameter :: nin = 5, nout = 6
        .. Local Scalars ..
        Real (Kind=nag_wp) :: d, prob
        Integer :: ifail, n1, n2
        .. Executable Statements ..
        Write (nout,*) 'GO1EZF Example Program Results'
        Write (nout,*)
! Skip heading in data file
        Read (nin,*)
! Display titles
        Write (nout,*) , D N1 N2 Two-sided probability'
        Write (nout,*)
d_lp: Do
        Read (nin,*,Iostat=ifail) n1, n2, d
        If (ifail/=O) Then
            Exit d_lp
        End If
! Calculate probability
        ifail = -1
        prob = g01ezf(n1,n2,d,ifail)
        If (ifail/=0) Then
            If (ifail/=3) Then
                Exit d_lp
```

```
            End If
            End If
! Display results
    Write (nout,99999) d, n1, n2, prob
    End Do d_lp
99999 Format (1X,F7.4,2X,I4,2X,I4,10X,F7.4)
    End Program gOlezfe
```


10.2 Program Data

```
GO1EZF Example Program Data
```

5	10	0.5
10	10	0.5
20	10	0.5
20	15	0.4833
400	200	0.1412
200	20	0.2861
1000	20	0.2113
200	50	0.1796
15	200	0.18
100	100	0.18

10.3 Program Results

G01EZF Example Program Results

D	N1	N2	Two-sided probability
0.5000	5	10	0.3506
0.5000	10	10	0.1678
0.5000	20	10	0.0623
0.4833	20	15	0.0261
0.1412	400	200	0.0083
0.2861	200	20	0.0789
0.2113	1000	20	0.2941
0.1796	200	50	0.1392
0.1800	15	200	0.0782
0.1800	100	100	

