NAG Library Routine Document F08VGF (DGGSVP3)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08VGF (DGGSVP3) uses orthogonal transformations to simultaneously reduce the m by n matrix A and the p by n matrix B to upper triangular form. This factorization is usually used as a preprocessing step for computing the generalized singular value decomposition (GSVD). For sufficiently large problems, a blocked algorithm is used to make best use of level 3 BLAS.

2 Specification

```
SUBROUTINE FO8VGF (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, &
    TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, &
    LWORK, INFO)
INTEGER M, P, N, LDA, LDB, K, L, LDU, LDV, LDQ, IWORK(N), &
    LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B (LDB,*), TOLA, TOLB, U(LDU,*), V(LDV,*), &
2(LDQ,*), IAU(N) , WORK(max(1,LWORK))
```

The routine may be called by its LAPACK name dggsvp3.

3 Description

F08VGF (DGGSVP3) computes orthogonal matrices U, V and Q such that

$$
\begin{aligned}
& V^{\mathrm{T}} B Q=\underset{p-l}{l\left(\begin{array}{ccc}
n-k-l & k & l \\
0 & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right)}
\end{aligned}
$$

where the k by k matrix A_{12} and l by l matrix B_{13} are nonsingular upper triangular; A_{23} is l by l upper triangular if $m-k-l \geq 0$ and is $(m-k)$ by l upper trapezoidal otherwise. $(k+l)$ is the effective numerical rank of the $(m+p)$ by n matrix $\left(\begin{array}{ll}A^{\mathrm{T}} & B^{\mathrm{T}}\end{array}\right)^{\mathrm{T}}$.
This decomposition is usually used as the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see routine F08YEF (DTGSJA); the two steps are combined in F08VCF (DGGSVD3).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: JOBU - CHARACTER(1)
Input
On entry: if $\mathrm{JOBU}=$ ' U ', the orthogonal matrix U is computed.
If $\mathrm{JOBU}={ }^{\prime} \mathrm{N}$ ', U is not computed.
Constraint: JOBU = 'U' or ' N '.
2: JOBV - CHARACTER(1)
Input
On entry: if JOBV $=$ ' V^{\prime}, the orthogonal matrix V is computed.
If $\mathrm{JOBV}=\mathrm{N}^{\mathrm{N}}$ ', V is not computed.
Constraint: JOBV $=$ ' V ' or ' N '.
3: JOBQ - CHARACTER(1)
Input
On entry: if $\mathrm{JOBQ}=$ ' Q ', the orthogonal matrix Q is computed.
If $\mathrm{JOBQ}={ }^{\prime} \mathrm{N}$ ', Q is not computed.
Constraint: JOBQ = 'Q' or ' N '.
4: M - INTEGER
Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
5: $\quad \mathrm{P}$ - INTEGER
Input
On entry: p, the number of rows of the matrix B.
Constraint: $\mathrm{P} \geq 0$.
6: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of columns of the matrices A and B.
Constraint: $\mathrm{N} \geq 0$.
7: $\quad \mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the m by n matrix A.
On exit: contains the triangular (or trapezoidal) matrix described in Section 3.
8: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08VGF (DGGSVP3) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.

9: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least $\max (1, N)$.
On entry: the p by n matrix B.
On exit: contains the triangular matrix described in Section 3.
10: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08VGF (DGGSVP3) is called.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{P})$.
11: TOLA - REAL (KIND=nag_wp) Input
12: \quad TOLB - REAL (KIND=nag_wp) Input
On entry: TOLA and TOLB are the thresholds to determine the effective numerical rank of matrix B and a subblock of A. Generally, they are set to

$$
\begin{aligned}
\mathrm{TOLA} & =\max (\mathrm{M}, \mathrm{~N})\|A\| \epsilon \\
\mathrm{TOLB} & =\max (\mathrm{P}, \mathrm{~N})\|B\| \epsilon
\end{aligned}
$$

where ϵ is the machine precision.
The size of TOLA and TOLB may affect the size of backward errors of the decomposition.
$\begin{array}{lll}\text { 13: } & \mathrm{K} \text { - INTEGER } & \text { Output } \\ \text { 14: } & \mathrm{L} \text { - INTEGER } & \text { Output }\end{array}$
On exit: K and L specify the dimension of the subblocks k and l as described in Section 3; $(k+l)$ is the effective numerical rank of $\left(\begin{array}{ll}\mathrm{A}^{\mathrm{T}} \quad \mathrm{B}^{\mathrm{T}}\end{array}\right)^{\mathrm{T}}$.

15: $\mathrm{U}(\mathrm{LDU}, *)$ - REAL (KIND=nag_wp) array
Output
Note: the second dimension of the array U must be at least $\max (1, \mathrm{M})$ if $\mathrm{JOBU}={ }^{\prime} \mathrm{U}$ ', and at least 1 otherwise.

On exit: if JOBU $=$ ' U ', U contains the orthogonal matrix U.
If $\mathrm{JOBU}=$ ' N ', U is not referenced.

16: LDU - INTEGER
Input
On entry: the first dimension of the array U as declared in the (sub)program from which F08VGF (DGGSVP3) is called.

Constraints:
if $\mathrm{JOBU}=$ ' U ', LDU $\geq \max (1, \mathrm{M})$;
otherwise $\mathrm{LDU} \geq 1$.
17: $\mathrm{V}(\mathrm{LDV}, *)$ - REAL (KIND=$=$ nag_wp) array
Output
Note: the second dimension of the array V must be at least $\max (1, \mathrm{P})$ if $\mathrm{JOBV}={ }^{\prime} \mathrm{V}^{\prime}$, and at least 1 otherwise.
On exit: if JOBV $={ }^{\prime} \mathrm{V}^{\prime}, \mathrm{V}$ contains the orthogonal matrix V.
If $\mathrm{JOBV}=$ ' N ', V is not referenced.
18: LDV - INTEGER
Input
On entry: the first dimension of the array V as declared in the (sub)program from which F08VGF (DGGSVP3) is called.

Constraints:

if $\mathrm{JOBV}={ }^{\prime} \mathrm{V}$ ', $\mathrm{LDV} \geq \max (1, \mathrm{P})$;
otherwise LDV ≥ 1.
19: $\mathrm{Q}(\mathrm{LDQ}, *)$ - REAL (KIND=nag_wp) array Output
Note: the second dimension of the array Q must be at least $\max (1, \mathrm{~N})$ if $\mathrm{JOBQ}=$ ' Q ', and at least 1 otherwise.
On exit: if JOBQ $=$ ' Q ', Q contains the orthogonal matrix Q.
If $\mathrm{JOBQ}=$ ' N ', Q is not referenced.
20: LDQ - INTEGER
Input
On entry: the first dimension of the array Q as declared in the (sub)program from which F08VGF (DGGSVP3) is called.
Constraints:
if $\mathrm{JOBQ}=$ ' Q ', LDQ $\geq \max (1, \mathrm{~N})$;
otherwise $\mathrm{LDQ} \geq 1$.
21: $\operatorname{IWORK}(\mathrm{N})$ - INTEGER array Workspace
22: TAU(N) - REAL (KIND=nag_wp) array Workspace
23: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array Workspace
On exit: if INFO $=0, \operatorname{WORK}(1)$ contains the minimum value of LWORK required for optimal performance.

24: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)routine from which F08VGF (DGGSVP3) is called.
If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.
Suggested value: for optimal performance, LWORK must generally be larger than the minimum; increase workspace by, say, $n b \times(\mathrm{N}+1)$, where $n b$ is the optimal block size

Constraints:

$$
\begin{aligned}
& \text { if JOBV }=\text { ' } \mathrm{V}^{\prime}, \text { LWORK } \geq \max (2 * \mathrm{~N}+1, \mathrm{P}, \mathrm{M}) \text {; } \\
& \text { if } \operatorname{JOBV}=\mathrm{N}^{\prime}, \text { LWORK } \geq \max (2 * \mathrm{~N}+1, \mathrm{M})
\end{aligned}
$$

25: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed factorization is nearly the exact factorization for nearby matrices $(A+E)$ and $(B+F)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2} \quad \text { and } \quad\|F\|_{2}=O(\epsilon)\|B\|_{2},
$$

and ϵ is the machine precision.

8 Parallelism and Performance

F08VGF (DGGSVP3) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08VGF (DGGSVP3) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

This routine replaces the deprecated routine F08VEF (DGGSVP) which used an unblocked algorithm and therefore did not make best use of level 3 BLAS routines.
The complex analogue of this routine is F08VUF (ZGGSVP3).

10 Example

This example finds the generalized factorization

$$
A=U \Sigma_{1}\left(\begin{array}{ll}
0 & S
\end{array}\right) Q^{\mathrm{T}}, \quad B=V \Sigma_{2}\left(\begin{array}{ll}
0 & T
\end{array}\right) Q^{\mathrm{T}}
$$

of the matrix pair $\left(\begin{array}{ll}A & B\end{array}\right)$, where

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
4 & 5 & 6 \\
7 & 8 & 8
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
-2 & -3 & 3 \\
4 & 6 & 5
\end{array}\right)
$$

10.1 Program Text

```
Program f08vgfe
    FO8VGF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: dggsvp3, f06raf, f08yef, nag_wp, x02ajf, x04cbf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter : : nin \(=5\), nout \(=6\)
    .. Local Scalars ..
    Real (Kind=nag_wp) : : eps, tola, tolb
    Integer : : i, ifail, info, irank, j, k, l, lda, \&
    ldb, ldq, ldu, ldv, lwork, m, n, \&
    ncycle, p
    .. Local Arrays ..
        Real (Kind=nag_wp), Allocatable : : a(:,:), alpha(:), b(:,:), beta(:), \&
                            \(\mathrm{q}(:,:), \operatorname{tau}(:), \mathrm{u}(:,:), \mathrm{v}(:,:), \quad\) \&
                    work(:)
```

```
    Real (Kind=nag_wp) :: wdum(1)
    Integer, Allocatable :: iwork(:)
    Character (1) :: clabs(1), rlabs(1)
    . Intrinsic Procedures ..
    Intrinsic :: max, nint, real
.. Executable Statements ..
Write (nout,*) 'FO8VGF Example Program Results'
Write (nout,*)
Flush (nout)
Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, p
lda = m
ldb = p
ldq = n
ldu = m
ldv = p
Allocate (a(lda,n),alpha(n),b(ldb,n),beta(n),q(ldq,n),tau(n),u(ldu,m), &
    v(ldv,p),iwork(n))
Perform workspace query to get optimal size of work
The NAG name equivalent of dggsvp3 is f08vgf
lwork = -1
Call dggsvp3('U','V','Q',m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &
    ldq,iwork,tau,wdum,lwork,info)
lwork = nint(wdum(1))
Allocate (work(lwork))
Read the m by n matrix A and p by n matrix B from data file
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*)(b(i,1:n),i=1,p)
Compute tola and tolb as
    tola = max(m,n)*norm(A)*macheps
    tolb = max(p,n)*norm(B)*macheps
eps = x02ajf()
tola = real(max(m,n),kind=nag_wp)*f06raf('One-norm',m,n,a,lda,work)*eps
tolb = real(max(p,n),kind=nag_wp)*f06raf('One-norm',p,n,b,ldb,work)*eps
Compute the factorization of (A, B)
    (A = U*S*(Q**T), B = V*T* (Q**T))
The NAG name equivalent of dggsvp3 is f08vgf
Call dggsvp3('U','V','Q',m,p,n,a,lda,b,ldb,tola,tolb,k,l,u,ldu,v,ldv,q, &
    ldq,iwork,tau,work,lwork,info)
Given the factors above find the generalized SVD of (A, B)
The NAG name equivalent of dtgdja is f08yef
Call f08yef('U','V','Q',m,p,n,k,l,a,lda,b,ldb,tola,tolb,alpha,beta,u,
    ldu,v,ldv,q,ldq,work,ncycle,info)
Print solution
irank = k + l
Write (nout,*) 'Number of infinite generalized singular values (k)'
Write (nout,99999) k
Write (nout,*) 'Number of finite generalized singular values (l)'
Write (nout,99999) l
Write (nout,*) 'Effective Numerical rank of (A; B) (k+l)'
Write (nout,99999) irank
Write (nout,*)
Write (nout,*) 'Finite generalized singular values'
Write (nout,99998)(alpha(j)/beta(j),j=k+1,irank)
Write (nout,*)
Flush (nout)
```

```
    Call x04cbf('General',' ',m,m,u,ldu,'1P,E12.4','Orthogonal matrix U',
    'Integer',rlabs,'Integer',clabs,80,0,ifail)
    Write (nout,*)
    Flush (nout)
    Call x04cbf('General',' ',p,p,v,ldv,'1P,E12.4','Orthogonal matrix V', &
    'Integer',rlabs,'Integer',clabs,80,0,ifail)
    Write (nout,*)
    Flush (nout)
    Call x04cbf('General',' ',n,n,q,ldq,'1P,E12.4','Orthogonal matrix Q', &
    'Integer',rlabs,'Integer',clabs,80,0,ifail)
    Write (nout,*)
    Flush (nout)
    Call x04cbf('Upper triangular','Non-unit',irank,irank,a(1,n-irank+1), &
    lda,'1P,E12.4','Nonsingular upper triangular matrix R','Integer',
    rlabs,'Integer',clabs,80,0,ifail)
Write (nout,*)
Write (nout,*) 'Number of cycles of the Kogbetliantz method'
Write (nout,99999) ncycle
99999 Format (1X,I5)
99998 Format (3X,8(1P,E12.4))
    End Program f08vgfe
```


10.2 Program Data

F08VGF Example Program Data

4	3	2	
		:Values of M, N and P	
1.0	2.0	3.0	
3.0	2.0	1.0	
4.0	5.0	6.0	
7.0	8.0	8.0	: End of matrix A
-2.0	-3.0	3.0	
4.0	6.0	5.0	

10.3 Program Results

```
FO8VGF Example Program Results
Number of infinite generalized singular values (k)
    1
Number of finite generalized singular values (l)
    2
Effective Numerical rank of (A; B) (k+l)
    3
Finite generalized singular values
    1.3151E+00 8.0185E-02
Orthogonal matrix U
\begin{tabular}{rrrrrr} 
& 1 & 2 & 3 & 4 \\
1 & \(-1.3484 \mathrm{E}-01\) & \(5.2524 \mathrm{E}-01\) & \(-2.0924 \mathrm{E}-01\) & \(8.1373 \mathrm{E}-01\) \\
2 & \(6.7420 \mathrm{E}-01\) & \(-5.2213 \mathrm{E}-01\) & \(-3.8886 \mathrm{E}-01\) & \(3.4874 \mathrm{E}-01\) \\
3 & \(2.6968 \mathrm{E}-01\) & \(5.2757 \mathrm{E}-01\) & \(-6.5782 \mathrm{E}-01\) & \(-4.6499 \mathrm{E}-01\) \\
4 & \(6.7420 \mathrm{E}-01\) & \(4.1615 \mathrm{E}-01\) & \(6.1014 \mathrm{E}-01\) & \(1.5127 \mathrm{E}-15\)
\end{tabular}
Orthogonal matrix V
1 3.5539E-01 -9.3472E-01
2 9.3472E-01 3.5539E-01
```

```
Orthogonal matrix 2
\(1 \quad-8.3205 \mathrm{E}-01-9.4633 \mathrm{E}-02-5.4657 \mathrm{E}-01\)
\(25.5470 \mathrm{E}-01-1.4195 \mathrm{E}-01-8.1985 \mathrm{E}-01\)
\(3 \quad 0.0000 \mathrm{E}+00-9.8534 \mathrm{E}-01 \quad 1.7060 \mathrm{E}-01\)
Nonsingular upper triangular matrix \(R\)
1 2 3
\(1-2.0569 \mathrm{E}+00-9.0121 \mathrm{E}+00-9.3705 \mathrm{E}+00\)
\(2 \quad-1.0882 \mathrm{E}+01-7.2688 \mathrm{E}+00\)
3
        \(-6.0405 \mathrm{E}+00\)
    Number of cycles of the Kogbetliantz method
        2
```

