NAG Library Routine Document F08AVF (ZGELQF)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08AVF (ZGELQF) computes the $L Q$ factorization of a complex m by n matrix.

2 Specification

```
SUBROUTINE FO8AVF (M, N, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max (1,LWORK))
```

The routine may be called by its LAPACK name zgelqf.

3 Description

F08AVF (ZGELQF) forms the $L Q$ factorization of an arbitrary rectangular complex m by n matrix. No pivoting is performed.
If $m \leq n$, the factorization is given by:

$$
A=\left(\begin{array}{ll}
L & 0
\end{array}\right) Q
$$

where L is an m by m lower triangular matrix (with real diagonal elements) and Q is an n by n unitary matrix. It is sometimes more convenient to write the factorization as

$$
A=\left(\begin{array}{ll}
L & 0
\end{array}\right)\binom{Q_{1}}{Q_{2}}
$$

which reduces to

$$
A=L Q_{1}
$$

where Q_{1} consists of the first m rows of Q, and Q_{2} the remaining $n-m$ rows.
If $m>n, L$ is trapezoidal, and the factorization can be written

$$
A=\binom{L_{1}}{L_{2}} Q
$$

where L_{1} is lower triangular and L_{2} is rectangular.
The $L Q$ factorization of A is essentially the same as the $Q R$ factorization of A^{H}, since

$$
A=\left(\begin{array}{ll}
L & 0
\end{array}\right) Q \Leftrightarrow A^{\mathrm{H}}=Q^{\mathrm{H}}\binom{L^{\mathrm{H}}}{0} .
$$

The matrix Q is not formed explicitly but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation (see Section 9).
Note also that for any $k<m$, the information returned in the first k rows of the array A represents an $L Q$ factorization of the first k rows of the original matrix A.

4 References

None.

5 Arguments

1: M - INTEGER
Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
2: N - INTEGER
Input
On entry: n, the number of columns of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
$\mathrm{A}(\mathrm{LDA}, *)$ - COMPLEX (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the m by n matrix A.
On exit: if $m \leq n$, the elements above the diagonal are overwritten by details of the unitary matrix Q and the lower triangle is overwritten by the corresponding elements of the m by m lower triangular matrix L.
If $m>n$, the strictly upper triangular part is overwritten by details of the unitary matrix Q and the remaining elements are overwritten by the corresponding elements of the m by n lower trapezoidal matrix L.

The diagonal elements of L are real.

4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08AVF (ZGELQF) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
5: $\mathrm{TAU}(*)$ - COMPLEX (KIND=nag_wp) array
Output
Note: the dimension of the array TAU must be at least $\max (1, \min (M, N))$.
On exit: further details of the unitary matrix Q.
6: $\quad \operatorname{WORK}(\max (1$, LWORK $))$ - COMPLEX (KIND=nag_wp) array
Workspace
On exit: if $\mathrm{INFO}=0$, the real part of $\operatorname{WORK}(1)$ contains the minimum value of LWORK required for optimal performance.

7: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08AVF (ZGELQF) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK $\geq \mathrm{M} \times n b$, where $n b$ is the optimal block size.
Constraint: $\operatorname{LWORK} \geq \max (1, \mathrm{M})$ or $\operatorname{LWORK}=-1$.
8: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Parallelism and Performance

F08AVF (ZGELQF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately $\frac{8}{3} m^{2}(3 n-m)$ if $m \leq n$ or $\frac{8}{3} n^{2}(3 m-n)$ if $m>n$.

To form the unitary matrix Q F08AVF (ZGELQF) may be followed by a call to F08AWF (ZUNGLQ):

```
CALL ZUNGLQ(N,N,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)
```

but note that the first dimension of the array A, specified by the argument LDA, must be at least N , which may be larger than was required by F08AVF (ZGELQF).

When $m \leq n$, it is often only the first m rows of Q that are required, and they may be formed by the call:

CALL ZUNGLQ(M,N,M,A,LDA,TAU,WORK,LWORK,INFO)
To apply Q to an arbitrary complex rectangular matrix C, F08AVF (ZGELQF) may be followed by a call to F08AXF (ZUNMLQ). For example,

```
CALL ZUNMLQ('Left','Conjugate Transpose',M,P,MIN(M,N),A,LDA,TAU, &
    C,LDC,WORK,LWORK,INFO)
```

forms the matrix product $C=Q^{\mathrm{H}} C$, where C is m by p.
The real analogue of this routine is F08AHF (DGELQF).

10 Example

This example finds the minimum norm solutions of the under-determined systems of linear equations

$$
A x_{1}=b_{1} \quad \text { and } \quad A x_{2}=b_{2}
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
A=\left(\begin{array}{rrrr}
0.28-0.36 i & 0.50-0.86 i & -0.77-0.48 i & 1.58+0.66 i \\
-0.50-1.10 i & -1.21+0.76 i & -0.32-0.24 i & -0.27-1.15 i \\
0.36-0.51 i & -0.07+1.33 i & -0.75+0.47 i & -0.08+1.01 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-1.35+0.19 i & 4.83-2.67 i \\
9.41-3.56 i & -7.28+3.34 i \\
-7.57+6.93 i & 0.62+4.53 i
\end{array}\right)
$$

10.1 Program Text

Program f08avfe
! F08AVF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: nag_wp, x04dbf, zgelqf, ztrsm, zunmlq .. Implicit None Statement .. Implicit None
! .. Parameters ..
Complex (Kind=nag_wp), Parameter : : one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter : : zero = (O.O_nag_wp,0.0_nag_wp)
Integer, Parameter : : nin $=5$, nout $=6$
.. Local Scalars ..
Integer : : i, ifail, info, lda, ldb, lwork, m, \& n, nrhs
.. Local Arrays ..
Complex (Kind=nag_wp), Allocatable : : a(:,:), b(:,:), tau(:), work(:)
Character (1) : clabs(1), rlabs(1)
.. Executable Statements ..
Write (nout,*) 'F08AVF Example Program Results'
Skip heading in data file
Read (nin,*)
Read (nin,*) m, n, nrhs
lda $=m$
$l d b=n$
lwork $=64 * n$
Allocate (a(lda,n),b(ldb, nrhs), tau(n), work(lwork))
! Read A and B from data file
Read (nin,*) (a(i, 1:n), i=1,m)
Read (nin,*) (b(i,1:nrhs), i=1,m)
Compute the LQ factorization of A
The NAG name equivalent of zgelqf is f08avf
Call zgelqf(m,n,a,lda,tau,work,lwork,info)
Solve L*Y $=B$, storing the result in B
The NAG name equivalent of ztrsm is f06zjf
Call ztrsm('Left','Lower','No transpose','Non-Unit',m,nrhs,one, a,lda,b, \& 1db)

```
    Set rows (M+1) to N of B to zero
```

 If \((m<n)\) Then
 b(m+1:n,1:nrhs) = zero
 End If
 Compute minimum-norm solution \(X=(Q * * H) * B\) in \(B\)
 The NAG name equivalent of zunmlq is f08axf
 Call zunmlq('Left','Conjugate transpose', \(n, n r h s, m, a, l d a, t a u, b, l d b, w o r k, ~ \& ~\)
 lwork,info)
 Print minimum-norm solution(s)
 Write (nout,*)
 Flush (nout)
 ifail: behaviour on error exit
 \(=0\) for hard exit, \(=1\) for quiet-soft, \(=-1\) for noisy-soft
    ```
ifail = 0
Call x04dbf('General',' ',n,nrhs,b,ldb,'Bracketed','F7.4',
    'Minimum-norm solution(s)','Integer',rlabs,'Integer',clabs,80,0,ifail)
End Program f08avfe
```


10.2 Program Data

```
FO8AVF Example Program Data
    3 4 2 :Values of M, N and NRHS
    ( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
    (-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
    ( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A
    (-1.35, 0.19) ( 4.83,-2.67)
    ( 9.41,-3.56) (-7.28, 3.34)
    (-7.57, 6.93) ( 0.62, 4.53) :End of matrix B
```


10.3 Program Results

```
FO8AVF Example Program Results
Minimum-norm solution(s)
1 (-2.8501, 6.4683) (-1.1682,-1.8886)
2 ( 1.6264,-0.7799) ( 2.8377, 0.7654)
3 ( 6.9290, 4.6481) (-1.7610,-0.7041)
4(1.4048, 3.2400) ( 1.0518,-1.6365)
```

