# NAG Library Routine Document

## 1Purpose

f06gtf (zaxpyi) adds a scaled sparse complex vector to an unscaled complex vector.

## 2Specification

Fortran Interface
 Subroutine f06gtf ( nz, a, x, indx, y)
 Integer, Intent (In) :: nz, indx(*) Complex (Kind=nag_wp), Intent (In) :: a, x(*) Complex (Kind=nag_wp), Intent (Inout) :: y(*)
#include nagmk26.h
 void f06gtf_ ( const Integer *nz, const Complex *a, const Complex x[], const Integer indx[], Complex y[])
The routine may be called by its BLAS name zaxpyi.

## 3Description

f06gtf (zaxpyi) performs the operation
 $y←αx+y$
where $x$ is a sparse complex vector stored in compressed form, and $y$ is a complex vector in full storage form.

## 4References

Dodson D S, Grimes R G and Lewis J G (1991) Sparse extensions to the Fortran basic linear algebra subprograms ACM Trans. Math. Software 17 253–263

## 5Arguments

1:     $\mathbf{nz}$ – IntegerInput
On entry: the number of nonzeros in the sparse vector $x$.
2:     $\mathbf{a}$ – Complex (Kind=nag_wp)Input
On entry: the scalar $\alpha$.
3:     $\mathbf{x}\left(*\right)$ – Complex (Kind=nag_wp) arrayInput
Note: the dimension of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nz}}\right)$.
On entry: the compressed vector $x$. x contains ${x}_{i}$ for $i\in J$.
4:     $\mathbf{indx}\left(*\right)$ – Integer arrayInput
Note: the dimension of the array indx must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nz}}\right)$.
On entry: the indices of the elements in the compressed vector $x$.
Constraint: the indices must be distinct.
5:     $\mathbf{y}\left(*\right)$ – Complex (Kind=nag_wp) arrayInput/Output
Note: the dimension of the array y must be at least $\underset{\mathit{k}}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\left\{{\mathbf{indx}}\left(\mathit{k}\right)\right\}$.
On entry: the vector $y$. Only elements corresponding to indices in indx are accessed.
On exit: the updated vector $y$.

None.

Not applicable.

## 8Parallelism and Performance

f06gtf (zaxpyi) is not threaded in any implementation.