
NAG Library Function Document

nag_opt_handle_init (e04rac)

1 Purpose

nag_opt_handle_init (e04rac) initializes a data structure for the NAG optimization modelling suite for
problems such as, quadratic programming (QP), nonlinear programming (NLP), linear semidefinite
programming (SDP) and semidefinite programming with bilinear matrix inequalities (BMI-SDP).

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_handle_init (void **handle, Integer nvar, NagError *fail)

3 Description

nag_opt_handle_init (e04rac) initializes an empty problem with n decision variables, x, and returns a
handle to the data structure. This handle may then be passed to some of the functions
nag_opt_handle_set_linobj (e04rec), nag_opt_handle_set_quadobj (e04rfc), nag_opt_handle_set_nlnobj
(e04rgc), nag_opt_handle_set_simplebounds (e04rhc), nag_opt_handle_set_linconstr (e04rjc), na
g_opt_handle_set_nlnconstr (e04rkc), nag_opt_handle_set_nlnhess (e04rlc), nag_opt_handle_set_linma
tineq (e04rnc) and nag_opt_handle_set_quadmatineq (e04rpc) to formulate the problem (define the
objective function and constraints) and to a compatible solver, nag_opt_handle_solve_ipopt (e04stc) or
nag_opt_handle_solve_pennon (e04svc), to solve it. The handle must not be changed between calls.
When the handle is no longer needed, nag_opt_handle_free (e04rzc) must be called to destroy it and
deallocate all the allocated memory and data within. In addition, the suite comprises auxiliary functions
for printing (nag_opt_handle_print (e04ryc)), for setting optional parameters (nag_opt_handle_opt_set
(e04zmc) and nag_opt_handle_opt_set_file (e04zpc)), for retrieving them (nag_opt_handle_opt_get
(e04znc)) and for reading data files for linear semidefinite programming (nag_opt_sdp_read_sdpa
(e04rdc)).

The handle can store various problem formulations, including quadratic programming (QP)

minimize
x2Rn

1
2x

THxþ cTx ðaÞ
subject to lB � Bx � uB ðbÞ

lx � x � ux; ðcÞ
ð1Þ

nonlinear programming (NLP)

minimize
x2Rn

f xð Þ ðaÞ
subject to lg � g xð Þ � ug ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð2Þ

linear semidefinite programming (SDP)

minimize
x2Rn

cTx ðaÞ

subject to
Xn

i¼1

xiA
k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ
lB � Bx � uB ðcÞ
lx � x � ux ðdÞ

ð3Þ

or semidefinite programming with bilinear matrix inequalities (BMI-SDP)

e04 – Minimizing or Maximizing a Function e04rac

Mark 26 e04rac.1

minimize
x2Rn

1
2x

THxþ cTx ðaÞ

subject to
Xn

i;j¼1

xixjQ
k
ij þ

Xn

i¼1

xiA
k
i �Ak

0 � 0; k ¼ 1; . . . ;mA ðbÞ

lB � Bx � uB ðcÞ
lx � x � ux; ðdÞ

ð4Þ

where H, Ak
i and Qk

ij denote symmetric matrices, B is a general rectangular matrix, mA is the number
of semidefinite constraints (matrix inequalities) and c, l and u are vectors. The expression S � 0 stands
for a constraint on eigenvalues of a symmetric matrix S, namely, all the eigenvalues should be non-
negative, i.e., the matrix S should be positive semidefinite.

3.1 Life Cycle of the Handle

Each handle should pass four stages in its life as depicted in the diagram below. These are initialization,
problem formulation, problem solution and deallocation. The initialization by nag_opt_handle_init
(e04rac) and deallocation by nag_opt_handle_free (e04rzc) mark the beginning and the end of the life
of the handle. During this time the handle must only be modified by the provided functions. Working
with a handle which has not been properly initialized will result in fail:code ¼ NE_HANDLE (uniform
across the suite) and is potentially very dangerous as it may cause unpredictable behaviour.

After the handle has been initialized, various routines are provided to add the following basic building
blocks to the problem formulation: objective function, simple variable bounds, (standard) linear
constraints and matrix constraints. Some of these can be defined at most once (e.g., objective function)
and an attempt to redefine them will cause fail:code ¼ NE_ALREADY_DEFINED. Others (matrix
constraints) may be composed by several repetitive calls. The functions work in a tight cooperation, if
the provided data is not compatible with the previous information, fail:code ¼ NE_REF_MATCH is
returned.

The handle may be passed to nag_opt_handle_set_linobj (e04rec) to define the linear objective function
(3)(a), to nag_opt_handle_set_quadobj (e04rfc) for the quadratic objective function (1)(a), (4)(a), to
nag_opt_handle_set_nlnobj (e04rgc) to declare the objective function as a nonlinear function (2)(a) or
neither of them if the problem is just to find a feasible point satisfying the constraints. If present, the
simple bounds on variables (box constraints, (1)(c), (2)(d), (3)(d), (4)(d)) may be defined by
nag_opt_handle_set_simplebounds (e04rhc). The linear constraints ((1)(b), (2)(c), (3)(c) and (4)(c)) are
set by nag_opt_handle_set_linconstr (e04rjc). The nonlinear constraints (2)(b) may be declared by
nag_opt_handle_set_nlnconstr (e04rkc). If the second derivatives of the nonlinear objective and
constraints are available they may be supplied via nag_opt_handle_set_nlnhess (e04rlc). The linear
matrix inequalities (3)(b) or the linear part of (4)(b) are defined by nag_opt_handle_set_linmatineq
(e04rnc), and this call can be repeated several times if more matrix inequality constraints are required.
Any existing (already defined) linear matrix inequalities can be extended by bilinear matrix terms in (4)
(b) by one or more calls to nag_opt_handle_set_quadmatineq (e04rpc). The functions nag_opt_han
dle_set_linobj (e04rec), nag_opt_handle_set_quadobj (e04rfc), nag_opt_handle_set_nlnobj (e04rgc),
nag_opt_handle_set_simplebounds (e04rhc), nag_opt_handle_set_linconstr (e04rjc), nag_opt_handle_
set_nlnconstr (e04rkc), nag_opt_handle_set_nlnhess (e04rlc), nag_opt_handle_set_linmatineq (e04rnc)
and nag_opt_handle_set_quadmatineq (e04rpc) may be called in an arbitrary order, however, a call to
nag_opt_handle_set_linmatineq (e04rnc) must precede a call to nag_opt_handle_set_quadmatineq
(e04rpc) for the matrix inequalities with bilinear terms and the nonlinear objective or constraints
(nag_opt_handle_set_nlnobj (e04rgc) or nag_opt_handle_set_nlnconstr (e04rkc)) must precede the
definition of the second derivatives by nag_opt_handle_set_nlnhess (e04rlc).

When the problem is fully formulated, the handle can be passed to a solver which is compatible with
the defined problem. At Mark 26 the NAG optimization modelling suite comprises of
nag_opt_handle_solve_ipopt (e04stc) and nag_opt_handle_solve_pennon (e04svc). If the solver cannot
deal with the given problem, fail:code ¼ NE_SETUP_ERROR is returned. Once the solver is called, no
further modifications of the problem formulation are allowed and calling any of the functions defining
the objective function or the constraints will result in fail:code ¼ NE_PHASE. The solver may be
called repetitively, for example, with various optional parameters and/or starting points.

e04rac NAG Library Manual

e04rac.2 Mark 26

Any optional parameters may be set by a call to nag_opt_handle_opt_set (e04zmc) at any time between
the initialization by nag_opt_handle_init (e04rac) and the call to the solver or after the solver returns.
Several optional parameters can be modified at once by nag_opt_handle_opt_set_file (e04zpc) when an
option file is used. The current value of the optional parameters may be retrieved by
nag_opt_handle_opt_get (e04znc).

For further details, see the documentation of the individual functions and the solvers which also contain
a description of all the optional parameters.

E04RA

E04RE E04RF E04RJ E04RN E04RP

E04SV

E04RZ

Objective function Linear
constraints

Matrix inequality constraints

Solving

Initialization

Free

Simple
constraints

E04RH E04RP
Problem
Formulation

E04RK

Nonlinear
constraints

E04RG

E04RL

Hessians

E04ST

4 References

None.

5 Arguments

1: handle – void ** Output

Note: handle does not need to be set on input.

On exit: holds a handle to the internal data structure where an empty problem with nvar variables
is defined. You must not change the handle until the call to nag_opt_handle_free (e04rzc)
(deallocation).

2: nvar – Integer Input

On entry: n, the number of decision variables in the problem.

Constraint: nvar > 0.

3: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

e04 – Minimizing or Maximizing a Function e04rac

Mark 26 e04rac.3

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, nvar ¼ valueh i.
Constraint: nvar > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_opt_handle_init (e04rac) is not threaded in any implementation.

9 Further Comments

None.

10 Example

See examples associated with other routines of the suite:

– the example in Section 10 in nag_opt_sdp_read_sdpa (e04rdc) demonstrates how to use the SDPA
file reader and how to solve linear semidefinite programming problems, including printing of the
matrix Lagrangian multipliers,

– the example in Section 10 in nag_opt_handle_set_quadobj (e04rfc) presents an alternative way to
compute the nearest correlation matrix by means of nonlinear semidefinite programming,

– a matrix completion problem (minimization of a rank of a partially unknown matrix) formulated as
SDP is demonsrated in Section 10 in nag_opt_handle_set_simplebounds (e04rhc), the example also
demonstrates monitoring mode of the solver nag_opt_handle_solve_pennon (e04svc),

– the example in Section 10 in nag_opt_handle_set_linconstr (e04rjc) solves LP/QP problems read in
from an MPS file by nag_opt_miqp_mps_read (e04mxc),

– an application for statistics, E optimal design, solved as an SDP problem is shown in Section 10 in
nag_opt_handle_set_linmatineq (e04rnc),

e04rac NAG Library Manual

e04rac.4 Mark 26

– the example in Section 10 in nag_opt_handle_set_quadmatineq (e04rpc) reads BMI-SDP problem
from a file which might be modified by users, in this case it solves Static Output Feedback (SOF)
problem,

– the example in Section 10 in nag_opt_handle_print (e04ryc) walks through the life cycle of the
handle in which a BMI-SDP problem is formulated and solved,

– an example in Section 10 in nag_opt_handle_solve_ipopt (e04stc) is a small test from Hock and
Schittkowski set to show how to call the NLP solver,

– the simple example in Section 10 in nag_opt_handle_solve_pennon (e04svc) demonstrates on the
LovÄsz # function eigenvalue optimization problem formulated as SDP.

e04 – Minimizing or Maximizing a Function e04rac

Mark 26 e04rac.5 (last)

	e04rac
	1 Purpose
	2 Specification
	3 Description
	3.1 Life Cycle of the Handle

	4 References
	5 Arguments
	handle
	nvar
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

