NAG Library Function Document
 nag_1d_cheb_eval2 (e02akc)

1 Purpose

nag_1d_cheb_eval2 (e02akc) evaluates a polynomial from its Chebyshev series representation, allowing an arbitrary index increment for accessing the array of coefficients.

2 Specification

```
#include <nag.h>
#include <nage02.h>
void nag_1d_cheb_eval2 (Integer n, double xmin, double xmax,
    const double a[], Integer ial, double x, double *result, NagError *fail)
```


3 Description

If supplied with the coefficients a_{i}, for $i=0,1, \ldots, n$, of a polynomial $p(\bar{x})$ of degree n, where

$$
p(\bar{x})=\frac{1}{2} a_{0}+a_{1} T_{1}(\bar{x})+\cdots+a_{n} T_{n}(\bar{x})
$$

nag_1d_cheb_eval2 (e02akc) returns the value of $p(\bar{x})$ at a user-specified value of the variable x. Here $T_{j}(\bar{x})$ denotes the Chebyshev polynomial of the first kind of degree j with argument \bar{x}. It is assumed that the independent variable \bar{x} in the interval $[-1,+1]$ was obtained from your original variable x in the interval $\left[x_{\text {min }}, x_{\text {max }}\right]$ by the linear transformation

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{x_{\max }-x_{\min }} .
$$

The coefficients a_{i} may be supplied in the array \mathbf{a}, with any increment between the indices of array elements which contain successive coefficients. This enables the function to be used in surface fitting and other applications, in which the array might have two or more dimensions.
The method employed is based on the three-term recurrence relation due to Clenshaw (see Clenshaw (1955)), with modifications due to Reinsch and Gentleman (see Gentleman (1969)). For further details of the algorithm and its use see Cox (1973) and Cox and Hayes (1973).

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9 118-120

Cox M G (1973) A data-fitting package for the non-specialist user NPL Report NAC 40 National Physical Laboratory

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user NPL Report NAC26 National Physical Laboratory
Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients Comput. J. 12 160-165

5 Arguments

1: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the degree of the given polynomial $p(\bar{x})$.
Constraint: $\mathbf{n} \geq 0$.

```
2: xmm - double Input
3: xmax - double Input
```

On entry: the lower and upper end points respectively of the interval $\left[x_{\min }, x_{\max }\right]$. The Chebyshev series representation is in terms of the normalized variable \bar{x}, where

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{x_{\max }-x_{\min }}
$$

Constraint: xmin $<$ xmax.

4: $\quad \mathbf{a}[\operatorname{dim}]-$ const double
Input
Note: the dimension, dim, of the array a must be at least $((\mathbf{n}+1-1) \times \mathbf{i a 1}+1)$.
On entry: the Chebyshev coefficients of the polynomial $p(\bar{x})$. Specifically, element $i \times \mathbf{i a 1}$ must contain the coefficient a_{i}, for $i=0,1, \ldots, n$. Only these $n+1$ elements will be accessed.

5: ia1 - Integer
Input
On entry: the index increment of a. Most frequently, the Chebyshev coefficients are stored in adjacent elements of a, and ia1 must be set to 1 . However, if, for example, they are stored in $\mathbf{a}[0], \mathbf{a}[3], \mathbf{a}[6], \ldots$, then the value of ia1 must be 3 .
Constraint: $\mathbf{i a} 1 \geq 1$.
6: $\quad \mathbf{x}-$ double
Input
On entry: the argument x at which the polynomial is to be evaluated.
Constraint: $\mathbf{x m i n} \leq \mathbf{x} \leq \mathbf{x m a x}$.

7: \quad result - double *
Output
On exit: the value of the polynomial $p(\bar{x})$.

8: fail - NagError *
Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE INT

On entry, ia1 $=\langle$ value \rangle.
Constraint: ia $1 \geq 1$.
On entry, $\mathbf{n}+1=\langle$ value \rangle.
Constraint: $\mathbf{n}+1 \geq 1$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL_2

On entry, $\mathbf{x m a x}=\langle$ value \rangle and $\mathbf{x m i n}=\langle$ value \rangle.
Constraint: xmax $>$ xmin.

NE_REAL_3

On entry, \mathbf{x} does not lie in $[\mathbf{x m i n}, \mathbf{x m a x}]: \mathbf{x}=\langle$ value $\rangle, \mathbf{x m i n}=\langle$ value \rangle and $\mathbf{x m a x}=\langle$ value \rangle.

7 Accuracy

The rounding errors are such that the computed value of the polynomial is exact for a slightly perturbed set of coefficients $a_{i}+\delta a_{i}$. The ratio of the sum of the absolute values of the δa_{i} to the sum of the absolute values of the a_{i} is less than a small multiple of $(n+1) \times$ machine precision.

8 Parallelism and Performance

nag_1d_cheb_eval2 (e02akc) is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to $n+1$.

10 Example

Suppose a polynomial has been computed in Chebyshev series form to fit data over the interval $[-0.5,2.5]$. The following program evaluates the polynomial at 4 equally spaced points over the interval. (For the purposes of this example, xmin, xmax and the Chebyshev coefficients are supplied . Normally a program would first read in or generate data and compute the fitted polynomial.)

10.1 Program Text

```
/* nag_1d_cheb_eval2 (e02akc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>
int main(void)
{
    /* Initialized data */
    const double xmin = -0.5;
```

```
    const double xmax = 2.5;
    const double a[7] = { 2.53213, 1.13032, 0.2715, 0.04434, 0.00547, 5.4e-4,
        4e-5
};
/* Scalars */
double p, x;
Integer exit_status, i, m, n, one;
NagError fail;
INIT_FAIL(fail);
exit_status = 0;
printf("nag_1d_cheb_eval2 (e02akc) Example Program Results\n");
n = 6;
one = 1;
printf("\n");
printf(" i Argument Value of polynomial\n");
m = 4;
for (i = 1; i <= m; ++i) {
    x = (xmin * (double) (m - i) + xmax * (double) (i - 1)) /
                (double) (m - 1);
    /* nag_1d_cheb_eval2 (e02akc).
        * Evaluation of fitted polynomial in one variable from
        * Chebyshev series form
        */
    nag_1d_cheb_eval2(n, xmin, xmax, a, one, x, &p, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_1d_cheb_eval2 (e02akc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    printf("%4" NAG_IFMT "%10.4f %9.4f\n", i, x, p);
}
END:
    return exit_status;
}
```


10.2 Program Data

None.

10.3 Program Results

```
nag_1d_cheb_eval2 (e02akc) Example Program Results
    Argument Value of polynomial
    -0.5000 0.3679
    0.5000 0.7165
    1.5000 1.3956
    2.5000 2.7183
```

Example Program
Evaluation of Chebyshev Representation of Polynomial

