
NAG Library Function Document

nag_pde_parab_1d_coll_ode (d03pjc)

1 Purpose

nag_pde_parab_1d_coll_ode (d03pjc) integrates a system of linear or nonlinear parabolic partial
differential equations (PDEs), in one space variable with scope for coupled ordinary differential
equations (ODEs). The spatial discretization is performed using a Chebyshev C0 collocation method,
and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is
solved using a backward differentiation formula (BDF) method or a Theta method (switching between
Newton's method and functional iteration).

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_coll_ode (Integer npde, Integer m, double *ts,
double tout,

void (*pdedef)(Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], Integer ncode,
const double v[], const double vdot[], double p[], double q[],
double r[], Integer *ires, Nag_Comm *comm),

void (*bndary)(Integer npde, double t, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double beta[], double gamma[],
Integer *ires, Nag_Comm *comm),

double u[], Integer nbkpts, const double xbkpts[], Integer npoly,
Integer npts, double x[], Integer ncode,

void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[], const double rcp[],
const double ucpt[], const double ucptx[], double f[],
Integer *ires, Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn,

void (*uvinit)(Integer npde, Integer npts, const double x[], double u[],
Integer ncode, double v[], Nag_Comm *comm),

const double rtol[], const double atol[], Integer itol,
Nag_NormType norm, Nag_LinAlgOption laopt, const double algopt[],
double rsave[], Integer lrsave, Integer isave[], Integer lisave,
Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_coll_ode (d03pjc) integrates the system of parabolic-elliptic equations and coupled
ODEs

Xnpde
j¼1

Pi;j
@Uj

@t
þQi ¼ x�m @

@x
xmRið Þ; i ¼ 1; 2; . . . ;npde; a � x � b; t � t0; ð1Þ

Fi t; V ; _V ; �; U�; U�
x; R

�; U�
t ; U

�
xt

� � ¼ 0; i ¼ 1; 2; . . . ;ncode; ð2Þ
where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.
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In (1), Pi;j and Ri depend on x, t, U , Ux, and V ; Qi depends on x, t, U , Ux, V and linearly on _V . The
vector U is the set of PDE solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ; Unpde x; tð Þ� �T
;

and the vector Ux is the partial derivative with respect to x. Note that Pi;j, Qi and Ri must not depend

on
@U

@t
. The vector V is the set of ODE solution values

V tð Þ ¼ V1 tð Þ; . . . ; Vncode tð Þ½ �T;
and _V denotes its derivative with respect to time.

In (2), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U�, U�

x , R
�, U�

t and U�
xt

are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F ¼ G�A _V �B
U�
t

U�
xt

� �
; ð3Þ

where F ¼ F1; . . . ; Fncode½ �T, G is a vector of length ncode, A is an ncode by ncode matrix, B is an
ncode by n� � npde

� �
matrix and the entries in G, A and B may depend on t, �, U�, U�

x and V . In
practice you need only supply a vector of information to define the ODEs and not the matrices A and
B. (See Section 5 for the specification of odedef.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and
b ¼ xnbkpts are the leftmost and rightmost of a user-defined set of break-points x1; x2; . . . ; xnbkpts. The
coordinate system in space is defined by the value of m; m ¼ 0 for Cartesian coordinates, m ¼ 1 for
cylindrical polar coordinates and m ¼ 2 for spherical polar coordinates.

The PDE system which is defined by the functions Pi;j, Qi and Ri must be specified in pdedef.

The initial values of the functions U x; tð Þ and V tð Þ must be given at t ¼ t0. These values are calculated
in uvinit.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

�i x; tð ÞRi x; t; U; Ux; Vð Þ ¼ �i x; t; U; Ux; V ; _V
� �

; i ¼ 1; 2; . . . ;npde; ð4Þ
where x ¼ a or x ¼ b. The functions �i may only depend linearly on _V .

The boundary conditions must be specified in bndary.

The algebraic-differential equation system which is defined by the functions Fi must be specified in
odedef. You must also specify the coupling points � in the array xi. Thus, the problem is subject to the
following restrictions:

(i) in (1), _Vj tð Þ, for j ¼ 1; 2; . . . ; ncode, may only appear linearly in the functions Qi, for
i ¼ 1; 2; . . . ;npde, with a similar restriction for �;

(ii) Pi;j and the flux Ri must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) the evaluation of the functions Pi;j, Qi and Ri is done at both the break-points and internally
selected points for each element in turn, that is Pi;j, Qi and Ri are evaluated twice at each break-
point. Any discontinuities in these functions must therefore be at one or more of the mesh points;

(v) at least one of the functions Pi;j must be nonzero so that there is a time derivative present in the
PDE problem;

(vi) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done either by specifying the solution at x ¼ 0:0 or
by specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0.
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The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break-
points by a Chebyshev polynomial of degree npoly. The interval between each pair of break-points is
treated by nag_pde_parab_1d_coll_ode (d03pjc) as an element, and on this element, a polynomial and
its space and time derivatives are made to satisfy the system of PDEs at npoly� 1 spatial points, which
are chosen internally by the code and the break-points. The user-defined break-points and the internally
selected points together define the mesh. The smallest value that npoly can take is one, in which case,
the solution is approximated by piecewise linear polynomials between consecutive break-points and the
method is similar to an ordinary finite element method.

In total there are nbkpts� 1ð Þ � npolyþ 1 mesh points in the spatial direction, and
npde� nbkpts� 1ð Þ � npolyþ 1ð Þ þ ncode ODEs in the time direction; one ODE at each break-
point for each PDE component, npoly� 1 ODEs for each PDE component between each pair of break-
points, and ncode coupled ODEs. The system is then integrated forwards in time using a Backward
Differentiation Formula (BDF) method or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (eds J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178–206

Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in
simulation and optimization of large systems Proc. IMA Conf. Simulation and Optimization (ed A J
Osiadcz) 35–50 Clarendon Press, Oxford

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a
channel by a suction at porous walls Fluid Dynamics Research 4

5 Arguments

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: m – Integer Input

On entry: the coordinate system used:

m ¼ 0
Indicates Cartesian coordinates.

m ¼ 1
Indicates cylindrical polar coordinates.

m ¼ 2
Indicates spherical polar coordinates.

Constraint: m ¼ 0, 1 or 2.

3: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.
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4: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

5: pdedef – function, supplied by the user External Function

pdedef must compute the functions Pi;j, Qi and Ri which define the system of PDEs. The
functions may depend on x, t, U , Ux and V ; Qi may depend linearly on _V . The functions must be
evaluated at a set of points.

The specification of pdedef is:

void pdedef (Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], Integer ncode,
const double v[], const double vdot[], double p[], double q[],
double r[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x½nptl� – const double Input

On entry: contains a set of mesh points at which Pi;j, Qi and Ri are to be evaluated.
x½0� and x½nptl� 1� contain successive user-supplied break-points and the elements of
the array will satisfy x½0� < x½1� < � � � < x½nptl� 1�.

4: nptl – Integer Input

On entry: the number of points at which evaluations are required (the value of
npolyþ 1).

5: u½npde� nptl� – const double Input

On entry: u½npde� j � 1ð Þ þ i � 1� contains the value of the component Ui x; tð Þ where
x ¼ x½j � 1�, for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ;nptl.

6: ux½npde� nptl� – const double Input

On entry: ux½npde� j � 1ð Þ þ i � 1� contains the value of the component
@Ui x; tð Þ

@x
where x ¼ x½j � 1�, for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ;nptl.

7: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

8: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ; ncode.

9: vdot½ncode� – const double Input

On entry: if ncode > 0, vdot½i � 1� contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ; ncode.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;npde.
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10: p½npde� npde� nptl� – double Output

On exit: p½npde� npde� k � 1ð Þ þ npde� j � 1ð Þ þ i � 1ð Þ� must be set to the value
of Pi;j x; t; U; Ux; Vð Þ where x ¼ x½k � 1�, for i ¼ 1; 2; . . . ; npde, j ¼ 1; 2; . . . ; npde and
k ¼ 1; 2; . . . ;nptl.

11: q½npde� nptl� – double Output

On exit: q½npde� j � 1ð Þ þ i � 1� must be set to the value of Qi x; t; U; Ux; V ; _V
� �

where x ¼ x½j � 1�, for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ;nptl.

12: r½npde� nptl� – double Output

On exit: r½npde� j � 1ð Þ þ i � 1� must be set to the value of Ri x; t; U; Ux; Vð Þ where
x ¼ x½i � 1�, for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; nptl.

13: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_coll_ode (d03pjc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

14: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_coll_ode
(d03pjc) you may allocate memory and initialize these pointers with various
quantities for use by pdedef when called from nag_pde_parab_1d_coll_ode
(d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

6: bndary – function, supplied by the user External Function

bndary must compute the functions �i and �i which define the boundary conditions as in
equation (4).

The specification of bndary is:

void bndary (Integer npde, double t, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double beta[], double gamma[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.
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2: t – double Input

On entry: the current value of the independent variable t.

3: u½npde� – const double Input

On entry: u½i � 1� contains the value of the component Ui x; tð Þ at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

4: ux½npde� – const double Input

On entry: ux½i � 1� contains the value of the component
@Ui x; tð Þ

@x
at the boundary

specified by ibnd, for i ¼ 1; 2; . . . ; npde.

5: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

6: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ; ncode.

7: vdot½ncode� – const double Input

On entry: if ncode > 0, vdot½i � 1� contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ; ncode.

Note: _Vi tð Þ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in Qj , for
j ¼ 1; 2; . . . ;npde.

8: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd ¼ 0
bndary must set up the coefficients of the left-hand boundary, x ¼ a.

ibnd 6¼ 0
bndary must set up the coefficients of the right-hand boundary, x ¼ b.

9: beta½npde� – double Output

On exit: beta½i � 1� must be set to the value of �i x; tð Þ at the boundary specified by
ibnd, for i ¼ 1; 2; . . . ;npde.

10: gamma½npde� – double Output

On exit: gamma½i � 1� must be set to the value of �i x; t; U; Ux; V ; _V
� �

at the boundary
specified by ibnd, for i ¼ 1; 2; . . . ; npde.

11: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.
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ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_coll_ode (d03pjc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

12: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_coll_ode
(d03pjc) you may allocate memory and initialize these pointers with various
quantities for use by bndary when called from nag_pde_parab_1d_coll_ode
(d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

7: u½neqn� – double Input/Output

On entry: if ind ¼ 1 the value of u must be unchanged from the previous call.

On exit: the computed solution Ui xj ; t
� �

, for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; npts, and Vk tð Þ,
for k ¼ 1; 2; . . . ;ncode, evaluated at t ¼ ts, as follows:

u½npde� j � 1ð Þ þ i � 1� contain Ui xj ; t
� �

, for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; npts,
and

u½npts� npdeþ i � 1� contain Vi tð Þ, for i ¼ 1; 2; . . . ; ncode.

8: nbkpts – Integer Input

On entry: the number of break-points in the interval a; b½ �.
Constraint: nbkpts � 2.

9: xbkpts½nbkpts� – const double Input

On entry: the values of the break-points in the space direction. xbkpts½0� must specify the left-
hand boundary, a, and xbkpts½nbkpts� 1� must specify the right-hand boundary, b.

Constraint: xbkpts½0� < xbkpts½1� < � � � < xbkpts½nbkpts� 1�.

10: npoly – Integer Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points.

Constraint: 1 � npoly � 49.

11: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts ¼ nbkpts� 1ð Þ � npolyþ 1.

12: x½npts� – double Output

On exit: the mesh points chosen by nag_pde_parab_1d_coll_ode (d03pjc) in the spatial direction.
The values of x will satisfy x½0� < x½1� < � � � < x½npts� 1�.

d03 – Partial Differential Equations d03pjc

Mark 26 d03pjc.7



13: ncode – Integer Input

On entry: the number of coupled ODE components.

Constraint: ncode � 0.

14: odedef – function, supplied by the user External Function

odedef must evaluate the functions F , which define the system of ODEs, as given in (3).

odedef will never be called and the NAG defined null void function pointer, NULLFN, can be
supplied in the call to nag_pde_parab_1d_coll_ode (d03pjc).

The specification of odedef is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[], const double rcp[],
const double ucpt[], const double ucptx[], double f[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

4: v½ncode� – const double Input

On entry: if ncode > 0, v½i � 1� contains the value of the component Vi tð Þ, for
i ¼ 1; 2; . . . ; ncode.

5: vdot½ncode� – const double Input

On entry: if ncode > 0, vdot½i � 1� contains the value of component _Vi tð Þ, for
i ¼ 1; 2; . . . ; ncode.

6: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi½nxi� – const double Input

On entry: if nxi > 0, xi½i � 1� contains the ODE/PDE coupling points, �i, for
i ¼ 1; 2; . . . ; nxi.

8: ucp½npde� nxi� – const double Input

On entry: if nxi > 0, ucp½npde� j � 1ð Þ þ i � 1� contains the value of Ui x; tð Þ at the
coupling point x ¼ �j , for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ; nxi.

9: ucpx½npde� nxi� – const double Input

On entry: if nxi > 0, ucpx½npde� j � 1ð Þ þ i � 1� contains the value of
@Ui x; tð Þ

@x
at the

coupling point x ¼ �j , for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ; nxi.
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10: rcp½npde� nxi� – const double Input

On entry: rcp½npde� j � 1ð Þ þ i � 1� contains the value of the flux Ri at the coupling
point x ¼ �j , for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; nxi.

11: ucpt½npde� nxi� – const double Input

On entry: if nxi > 0, ucpt½npde� j � 1ð Þ þ i � 1� contains the value of
@Ui

@t
at the

coupling point x ¼ �j , for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ; nxi.

12: ucptx½npde� nxi� – const double Input

On entry: ucptx½npde� j � 1ð Þ þ i � 1� contains the value of
@2Ui

@x@t
at the coupling

point x ¼ �j , for i ¼ 1; 2; . . . ; npde and j ¼ 1; 2; . . . ; nxi.

13: f½ncode� – double Output

On exit: f½i � 1� must contain the ith component of F , for i ¼ 1; 2; . . . ; ncode, where F
is defined as

F ¼ G�A _V �B
U�
t

U�
xt

� �
; ð5Þ

or

F ¼ �A _V �B
U�
t

U�
xt

� �
: ð6Þ

The definition of F is determined by the input value of ires.

14: ires – Integer * Input/Output

On entry: the form of F that must be returned in the array f.

ires ¼ 1
Equation (5) must be used.

ires ¼ �1
Equation (6) must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions as described below:

ires ¼ 2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail:code ¼ NE_USER_STOP.

ires ¼ 3
Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_coll_ode (d03pjc) returns to the calling
function with the error indicator set to fail:code ¼ NE_FAILED_DERIV.

15: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to odedef.
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user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_coll_ode
(d03pjc) you may allocate memory and initialize these pointers with various
quantities for use by odedef when called from nag_pde_parab_1d_coll_ode
(d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

15: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode ¼ 0, nxi ¼ 0;
if ncode > 0, nxi � 0.

16: xi½dim� – const double Input

Note: the dimension, dim, of the array xi must be at least max 1; nxið Þ.
On entry: xi½i � 1�, for i ¼ 1; 2; . . . ; nxi, must be set to the ODE/PDE coupling points.

Constraint: xbkpts½0� � xi½0� < xi½1� < � � � < xi½nxi� 1� � xbkpts½nbkpts� 1�.

17: neqn – Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn ¼ npde� nptsþ ncode.

18: uvinit – function, supplied by the user External Function

uvinit must compute the initial values of the PDE and the ODE components Ui xj ; t0
� �

, for
i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ; npts, and Vk t0ð Þ, for k ¼ 1; 2; . . . ; ncode.

The specification of uvinit is:

void uvinit (Integer npde, Integer npts, const double x[], double u[],
Integer ncode, double v[], Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.

3: x½npts� – const double Input

On entry: x½i � 1�, for i ¼ 1; 2; . . . ; npts, contains the current values of the space
variable xi.

4: u½npde� npts� – double Output

On exit: if nxi > 0, u½npde� j � 1ð Þ þ i � 1� contains the value of the component
Ui xj ; t0
� �

, for i ¼ 1; 2; . . . ;npde and j ¼ 1; 2; . . . ;npts.

5: ncode – Integer Input

On entry: the number of coupled ODEs in the system.
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6: v½ncode� – double Output

On exit: v½i � 1� contains the value of component Vi t0ð Þ, for i ¼ 1; 2; . . . ;ncode.

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to uvinit.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_coll_ode
(d03pjc) you may allocate memory and initialize these pointers with various
quantities for use by uvinit when called from nag_pde_parab_1d_coll_ode
(d03pjc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

19: rtol½dim� – const double Input

Note: the dimension, dim, of the array rtol must be at least

1 when itol ¼ 1 or 2;
neqn when itol ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol½i� 1� � 0:0 for all relevant i.

20: atol½dim� – const double Input

Note: the dimension, dim, of the array atol must be at least

1 when itol ¼ 1 or 3;
neqn when itol ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol½i� 1� � 0:0 for all relevant i.

Note: corresponding elements of rtol and atol cannot both be 0:0.

21: itol – Integer Input

On entry: a value to indicate the form of the local error test. itol indicates to
nag_pde_parab_1d_coll_ode (d03pjc) whether to interpret either or both of rtol or atol as a
vector or scalar. The error test to be satisfied is ei=wik k < 1:0, where wi is defined as follows:

itol rtol atol wi

1 scalar scalar rtol½0� � Uij j þ atol½0�
2 scalar vector rtol½0� � Uij j þ atol½i� 1�
3 vector scalar rtol½i� 1� � Uij j þ atol½0�
4 vector vector rtol½i� 1� � Uij j þ atol½i� 1�

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, u½i � 1�, for i ¼ 1; 2; . . . ;neqn.

The choice of norm used is defined by the argument norm.

Constraint: 1 � itol � 4.
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22: norm – Nag_NormType Input

On entry: the type of norm to be used.

norm ¼ Nag MaxNorm
Maximum norm.

norm ¼ Nag TwoNorm
Averaged L2 norm.

If unorm denotes the norm of the vector u of length neqn, then for the averaged L2 norm

unorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

neqn

Xneqn
i¼1

u½i� 1�=wið Þ2
vuut ;

while for the maximum norm

unorm ¼ max
i

u½i� 1�=wij j:

See the description of itol for the formulation of the weight vector w.

Constraint: norm ¼ Nag MaxNorm or Nag TwoNorm.

23: laopt – Nag_LinAlgOption Input

On entry: the type of matrix algebra required.

laopt ¼ Nag LinAlgFull
Full matrix methods to be used.

laopt ¼ Nag LinAlgBand
Banded matrix methods to be used.

laopt ¼ Nag LinAlgSparse
Sparse matrix methods to be used.

Constraint: laopt ¼ Nag LinAlgFull, Nag LinAlgBand or Nag LinAlgSparse.

Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
ncode ¼ 0).

24: algopt½30� – const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt½0� should be set to 0:0. Default values will also be used for
any other elements of algopt set to zero. The permissible values, default values, and meanings
are as follows:

algopt½0�
Selects the ODE integration method to be used. If algopt½0� ¼ 1:0, a BDF method is used
and if algopt½0� ¼ 2:0, a Theta method is used. The default value is algopt½0� ¼ 1:0.

If algopt½0� ¼ 2:0, then algopt½i � 1�, for i ¼ 2; 3; 4 are not used.

algopt½1�
Specifies the maximum order of the BDF integration formula to be used. algopt½1� may be
1:0, 2:0, 3:0, 4:0 or 5:0. The default value is algopt½1� ¼ 5:0.

algopt½2�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt½2� ¼ 1:0 a modified Newton iteration is used and if
algopt½2� ¼ 2:0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified
Newton iteration. The default value is algopt½2� ¼ 1:0.
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algopt½3�
Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ; npde, for some i or when there is no _Vi tð Þ dependence in the
coupled ODE system. If algopt½3� ¼ 1:0, then the Petzold test is used. If algopt½3� ¼ 2:0,
then the Petzold test is not used. The default value is algopt½3� ¼ 1:0.

If algopt½0� ¼ 1:0, then algopt½i � 1�, for i ¼ 5; 6; 7, are not used.

algopt½4�
Specifies the value of Theta to be used in the Theta integration method.
0:51 � algopt½4� � 0:99. The default value is algopt½4� ¼ 0:55.

algopt½5�
Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt½5� ¼ 1:0, a modified Newton iteration is used and
if algopt½5� ¼ 2:0, a functional iteration method is used. The default value is
algopt½5� ¼ 1:0.

algopt½6�
Specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
algopt½6� ¼ 1:0, then switching is allowed and if algopt½6� ¼ 2:0, then switching is not
allowed. The default value is algopt½6� ¼ 1:0.

algopt½10�
Specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the argument itask. If algopt½0� 6¼ 0:0, a
value of 0:0 for algopt½10�, say, should be specified even if itask subsequently specifies
that tcrit will not be used.

algopt½11�
Specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, algopt½11� should be set to 0:0.

algopt½12�
Specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, algopt½12� should be set to 0:0.

algopt½13�
Specifies the initial step size to be attempted by the integrator. If algopt½13� ¼ 0:0, then the
initial step size is calculated internally.

algopt½14�
Specifies the maximum number of steps to be attempted by the integrator in any one call.
If algopt½14� ¼ 0:0, then no limit is imposed.

algopt½22�
Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U , Ut, V and _V . If algopt½22� ¼ 1:0, a modified Newton iteration is
used and if algopt½22� ¼ 2:0, functional iteration is used. The default value is
algopt½22� ¼ 1:0.

algopt½28� and algopt½29� are used only for the sparse matrix algebra option,
laopt ¼ Nag LinAlgSparse.

algopt½28�
Governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < algopt½28� < 1:0, with smaller values biasing the algorithm
towards maintaining sparsity at the expense of numerical stability. If algopt½28� lies
outside this range then the default value is used. If the functions regard the Jacobian
matrix as numerically singular then increasing algopt½28� towards 1:0 may help, but at the
cost of increased fill-in. The default value is algopt½28� ¼ 0:1.
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algopt½29�
Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
algopt½28�) below which an internal error is invoked. If algopt½29� is greater than 1:0 no
check is made on the pivot size, and this may be a necessary option if the Jacobian is
found to be numerically singular (see algopt½28�). The default value is
algopt½29� ¼ 0:0001.

25: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

26: lrsave – Integer Input

On entry: the dimension of the array rsave. Its size depends on the type of matrix algebra
selected.

If laopt ¼ Nag LinAlgFull, lrsave � neqn� neqnþ neqnþ nwkres þ lenode.

If laopt ¼ Nag LinAlgBand, lrsave � 3�mlu þ 1ð Þ � neqnþ nwkres þ lenode.

If laopt ¼ Nag LinAlgSparse, lrsave � 4� neqnþ 11� neqn=2þ 1þ nwkres þ lenode.

Where

mlu is the lower or upper half bandwidths such that
mlu ¼ 3� npde� 1, for PDE problems only (no coupled ODEs); or
mlu ¼ neqn� 1, for coupled PDE/ODE problems.

nwkres ¼
3� npolyþ 1ð Þ2 þ npolyþ 1ð Þ � npde2 þ 6� npdeþ nbkptsþ 1

� �þ 8� npdeþ nxi� 5� npde þ 1ð Þ þ ncodeþ 3; when ncode > 0 and nxi > 0; or
3� npolyþ 1ð Þ2 þ npolyþ 1ð Þ � npde2 þ 6� npdeþ nbkptsþ 1

� �þ 13 � npdeþ ncodeþ 4; when ncode > 0 and nxi ¼ 0; or
3� npolyþ 1ð Þ2 þ npolyþ 1ð Þ � npde2 þ 6� npdeþ nbkptsþ 1

� �þ 13 � npdeþ 5; when ncode ¼ 0:

8<
:

lenode ¼ 6þ int algopt½1�ð Þð Þ � neqnþ 50; when the BDF method is used; or
9� neqnþ 50; when the Theta method is used:

	

Note: when laopt ¼ Nag LinAlgSparse, the value of lrsave may be too small when supplied to
the integrator. An estimate of the minimum size of lrsave is printed on the current error message
unit if itrace > 0 and the function returns with fail:code ¼ NE_INT_2.

27: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set on entry.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration required for subsequent calls. In particular:

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the ODE method last used in the time integration.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.
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28: lisave – Integer Input

On entry: the dimension of the array isave. Its size depends on the type of matrix algebra
selected:

if laopt ¼ Nag LinAlgFull, lisave � 24;

if laopt ¼ Nag LinAlgBand, lisave � neqnþ 24;

if laopt ¼ Nag LinAlgSparse, lisave � 25� neqnþ 24.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function
returns with fail:code ¼ NE_INT_2.

29: itask – Integer Input

On entry: specifies the task to be performed by the ODE integrator.

itask ¼ 1
Normal computation of output values u at t ¼ tout.

itask ¼ 2
One step and return.

itask ¼ 3
Stop at first internal integration point at or beyond t ¼ tout.

itask ¼ 4
Normal computation of output values u at t ¼ tout but without overshooting t ¼ tcrit
where tcrit is described under the argument algopt.

itask ¼ 5
Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the argument algopt.

Constraint: itask ¼ 1, 2, 3, 4 or 5.

30: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_coll_ode (d03pjc) and
the underlying ODE solver. itrace may take the value �1, 0, 1, 2 or 3.

itrace ¼ �1
No output is generated.

itrace ¼ 0
Only warning messages from the PDE solver are printed.

itrace > 0
Output from the underlying ODE solver is printed. This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

31: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

32: ind – Integer * Input/Output

On entry: indicates whether this is a continuation call or a new integration.

ind ¼ 0
Starts or restarts the integration in time.
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ind ¼ 1
Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag_pde_parab_1d_coll_ode
(d03pjc).

Constraint: ind ¼ 0 or 1.

On exit: ind ¼ 1.

33: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

34: saved – Nag_D03_Save * Communication Structure

saved must remain unchanged following a previous call to a Chapter d03 function and prior to
any subsequent call to a Chapter d03 function.

35: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed
solution.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef or bndary.

NE_FAILED_START

atol and rtol were too small to start integration.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far
as ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied values
of atol and rtol. ts ¼ valueh i.

NE_INCOMPAT_PARAM

On entry, m ¼ valueh i and xbkpts½0� ¼ valueh i.
Constraint: m � 0 or xbkpts½0� � 0:0
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NE_INT

ires set to an invalid value in call to pdedef, bndary, or odedef.

On entry, ind ¼ valueh i.
Constraint: ind ¼ 0 or 1.

On entry, itask ¼ valueh i.
Constraint: itask ¼ 1, 2, 3, 4 or 5.

On entry, itol ¼ valueh i.
Constraint: itol ¼ 1, 2, 3 or 4.

On entry, m ¼ valueh i.
Constraint: m ¼ 0, 1 or 2.

On entry, nbkpts ¼ valueh i.
Constraint: nbkpts � 2.

On entry, ncode ¼ valueh i.
Constraint: ncode � 0.

On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npoly ¼ valueh i.
Constraint: npoly � 49.

On entry, npoly ¼ valueh i.
Constraint: npoly � 1.

NE_INT_2

On entry, corresponding elements atol½I � 1� and rtol½J � 1� are both zero: I ¼ valueh i and
J ¼ valueh i.
On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, ncode ¼ valueh i and nxi ¼ valueh i.
Constraint: nxi ¼ 0 when ncode ¼ 0.

On entry, ncode ¼ valueh i and nxi ¼ valueh i.
Constraint: nxi � 0 when ncode > 0.

When using the sparse option lisave or lrsave is too small: lisave ¼ valueh i, lrsave ¼ valueh i.

NE_INT_3

On entry, npts ¼ valueh i, nbkpts ¼ valueh i and npoly ¼ valueh i.
Constraint: npts ¼ nbkpts� 1ð Þ � npolyþ 1.

NE_INT_4

On entry, neqn ¼ valueh i, npde ¼ valueh i, npts ¼ valueh i and ncode ¼ valueh i.
Constraint: neqn ¼ npde� nptsþ ncode.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

Serious error in internal call to an auxiliary. Increase itrace for further details.
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NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt½14� has been exceeded.
algopt½14� ¼ valueh i.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, break-points xbkpts badly ordered: I ¼ valueh i, xbkpts½I � 1� ¼ valueh i, J ¼ valueh i
and xbkpts½J � 1� ¼ valueh i.
On entry, I ¼ valueh i, xi½I � ¼ valueh i and xi½I � 1� ¼ valueh i.
Constraint: xi½I � > xi½I � 1�.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, algopt½0� ¼ valueh i.
Constraint: algopt½0� ¼ 0:0, 1:0 or 2:0.

NE_REAL_2

On entry, at least one point in xi l ies outside xbkpts½0�; xbkpts½nbkpts� 1�½ �:
xbkpts½0� ¼ valueh i and xbkpts½nbkpts� 1� ¼ valueh i.
On entry, tout ¼ valueh i and ts ¼ valueh i.
Constraint: tout > ts.

On entry, tout� ts is too small: tout ¼ valueh i and ts ¼ valueh i.

NE_REAL_ARRAY

On entry, I ¼ valueh i and atol½I � 1� ¼ valueh i.
Constraint: atol½I � 1� � 0:0.

On entry, I ¼ valueh i and rtol½I � 1� ¼ valueh i.
Constraint: rtol½I � 1� � 0:0.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, bndary, or odedef.
Integration is successful as far as ts: ts ¼ valueh i.

NE_ZERO_WTS

Zero error weights encountered during time integration.
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7 Accuracy

nag_pde_parab_1d_coll_ode (d03pjc) controls the accuracy of the integration in the time direction but
not the accuracy of the approximation in space. The spatial accuracy depends on both the number of
mesh points and on their distribution in space. In the time integration only the local error over a single
step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should
therefore test the effect of varying the accuracy argument atol and rtol.

8 Parallelism and Performance

nag_pde_parab_1d_coll_ode (d03pjc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_pde_parab_1d_coll_ode (d03pjc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems.
The position and nature of the boundary conditions in particular are critical in defining a stable
problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

10 Example

This example provides a simple coupled system of one PDE and one ODE.

V1ð Þ2@U1

@t
� xV1

_V1
@U1

@x
¼ @2U1

@x2

_V1 ¼ V1U1 þ @U1

@x
þ 1þ t;

for t 2 10�4; 0:1� 2i
� �

; i ¼ 1; 2; . . . ; 5; x 2 0; 1½ �.
The left boundary condition at x ¼ 0 is

@U1

@x
¼ �V1 exp t:

The right boundary condition at x ¼ 1 is

U1 ¼ �V1
_V1:

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V1 ¼ t; and U1 x; tð Þ ¼ exp t 1� xð Þf g � 1:0; x 2 0; 1½ �;
and the coupling point is at �1 ¼ 1:0.
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10.1 Program Text

/* nag_pde_parab_1d_coll_ode (d03pjc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL pdedef(Integer, double, const double[], Integer, const
double[], const double[], Integer,
const double[], const double[], double[],
double[], double[], Integer *, Nag_Comm *);

static void NAG_CALL bndary(Integer, double, const double[], const double[],
Integer, const double[], const double[],
Integer, double[], double[], Integer *,
Nag_Comm *);

static void NAG_CALL odedef(Integer, double, Integer, const double[],
const double[], Integer, const double[],
const double[], const double[], const double[],
const double[], const double[], double[],
Integer *, Nag_Comm *);

static void NAG_CALL uvinit(Integer, Integer, const double[], double[],
Integer, double[], Nag_Comm *);

#ifdef __cplusplus
}
#endif

#define U(I, J) u[npde*((J) -1)+(I) -1]
#define UX(I, J) ux[npde*((J) -1)+(I) -1]
#define UCP(I, J) ucp[npde*((J) -1)+(I) -1]
#define UCPX(I, J) ucpx[npde*((J) -1)+(I) -1]
#define P(I, J, K) p[npde*(npde*((K) -1)+(J) -1)+(I) -1]
#define Q(I, J) q[npde*((J) -1)+(I) -1]
#define R(I, J) r[npde*((J) -1)+(I) -1]

int main(void)
{

/* Constant scalars */
const Integer print_stat = 0;
const Integer npde = 1, ncode = 1, npoly = 3, m = 0, nbkpts = 30;
const Integer nel = nbkpts - 1, npts = nel * npoly + 1;
const Integer neqn = npde*npts + ncode;
const Integer nxi = 1, lisave = 24, npl1 = npoly + 1;
const Integer nwkres = npl1*(3*npl1 + npde*(npde + 6) + nbkpts + 1) +

8*npde + nxi*(5*npde + 1) + ncode + 3;
const Integer lenode = 11 * neqn + 50;
const Integer lrsave = neqn*neqn + neqn + nwkres + lenode;

/* Constant arrays */
static double ruser[4] = { -1.0, -1.0, -1.0, -1.0 };

/* Scalars */
double tout, ts;
Integer exit_status = 0, i, ind, it, itask, itol, itrace;
Nag_Boolean theta;

/* Arrays */
double *algopt = 0, *atol = 0, *rsave = 0, *rtol = 0;
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double *u = 0, *x = 0, *xbkpts = 0, *xi = 0;
Integer *isave = 0;

/* Nag Types */
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

INIT_FAIL(fail);

printf(" nag_pde_parab_1d_coll_ode (d03pjc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(neqn, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xbkpts = NAG_ALLOC(nbkpts, double)) ||
!(xi = NAG_ALLOC(nxi, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
printf("Allocation failure\n");
exit_status = 1;
goto END;

}

itrace = 0;
itol = 1;
atol[0] = 1e-5;
rtol[0] = atol[0];
printf("\n Simple coupled PDE using BDF\n\n");
printf(" Degree of Polynomial =%4" NAG_IFMT "\n", npoly);
printf(" Number of elements =%4" NAG_IFMT "\n", nbkpts - 1);
printf(" Accuracy requirement =%12.3e\n", atol[0]);
printf(" Number of points =%4" NAG_IFMT "\n\n", npts);

/* Set break-points */

for (i = 0; i < nbkpts; ++i)
xbkpts[i] = i / (nbkpts - 1.0);

xi[0] = 1.0;
ind = 0;
itask = 1;

/* Set theta = TRUE if the Theta integrator is required */

theta = Nag_FALSE;
for (i = 0; i < 30; ++i)

algopt[i] = 0.0;

if (theta) {
algopt[0] = 2.0;

}
else {

algopt[0] = 0.0;
}

/* Loop over output value of t */

ts = 1.e-4;
comm.p = (Pointer) &ts;

printf("%7s%8s%s\n", "time", "", "solution at x=0");
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tout = 0.1;
for (it = 0; it < 5; ++it) {

tout = tout + tout;
/* nag_pde_parab_1d_coll_ode (d03pjc).
* General system of parabolic PDEs, coupled DAEs, method of
* lines, Chebyshev C^0 collocation, one space variable
*/

nag_pde_parab_1d_coll_ode(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
xbkpts, npoly, npts, x, ncode, odedef, nxi, xi,
neqn, uvinit, rtol, atol, itol, Nag_TwoNorm,
Nag_LinAlgFull, algopt, rsave, lrsave, isave,
lisave, itask, itrace, 0, &ind, &comm, &saved,
&fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_pde_parab_1d_coll_ode (d03pjc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("%7.1f%15s%6.2f\n", ts, "", u[0]);
}
if (print_stat) {

printf(" Number of integration steps in time = %6" NAG_IFMT "\n", isave[0]);
printf(" Number of function evaluations = %6" NAG_IFMT "\n", isave[1]);
printf(" Number of Jacobian evaluations =%6" NAG_IFMT "\n", isave[2]);
printf(" Number of iterations = %6" NAG_IFMT "\n\n", isave[4]);

}
END:

NAG_FREE(algopt);
NAG_FREE(atol);
NAG_FREE(rsave);
NAG_FREE(rtol);
NAG_FREE(u);
NAG_FREE(x);
NAG_FREE(xbkpts);
NAG_FREE(xi);
NAG_FREE(isave);

return exit_status;
}

static void NAG_CALL uvinit(Integer npde, Integer npts, const double x[],
double u[], Integer ncode, double v[],
Nag_Comm *comm)

{
/* Routine for PDE initial values (start time is 0.1e-6) */

double *ts = (double *) comm->p;
Integer i;

if (comm->user[0] == -1.0) {
/* printf("(User-supplied callback uvinit, first invocation.)\n"); */
comm->user[0] = 0.0;

}
v[0] = *ts;
for (i = 1; i <= npts; ++i)

U(1, i) = exp(*ts * (1.0 - x[i - 1])) - 1.0;
return;

}

static void NAG_CALL odedef(Integer npde, double t, Integer ncode,
const double v[], const double vdot[],
Integer nxi, const double xi[],
const double ucp[], const double ucpx[],
const double rcp[], const double ucpt[],
const double ucptx[], double f[], Integer *ires,
Nag_Comm *comm)

{
if (comm->user[1] == -1.0) {
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/* printf("(User-supplied callback odedef, first invocation.)\n"); */
comm->user[1] = 0.0;

}
if (*ires == 1) {

f[0] = vdot[0] - v[0] * UCP(1, 1) - UCPX(1, 1) - 1.0 - t;
}
else if (*ires == -1) {

f[0] = vdot[0];
}
return;

}

static void NAG_CALL pdedef(Integer npde, double t, const double x[],
Integer nptl, const double u[], const double ux[],
Integer ncode, const double v[],
const double vdot[], double p[], double q[],
double r[], Integer *ires, Nag_Comm *comm)

{
Integer i;
if (comm->user[2] == -1.0) {

/* printf("(User-supplied callback pdedef, first invocation.)\n"); */
comm->user[2] = 0.0;

}
for (i = 1; i <= nptl; ++i) {

P(1, 1, i) = v[0] * v[0];
R(1, i) = UX(1, i);
Q(1, i) = -x[i - 1] * UX(1, i) * v[0] * vdot[0];

}
return;

}

static void NAG_CALL bndary(Integer npde, double t, const double u[],
const double ux[], Integer ncode,
const double v[], const double vdot[],
Integer ibnd, double beta[], double gamma[],
Integer *ires, Nag_Comm *comm)

{
if (comm->user[3] == -1.0) {

/* printf("(User-supplied callback bndary, first invocation.)\n"); */
comm->user[3] = 0.0;

}
beta[0] = 1.0;
if (ibnd == 0) {

gamma[0] = -v[0] * exp(t);
}
else {

gamma[0] = -v[0] * vdot[0];
}
return;

}

10.2 Program Data

None.

10.3 Program Results

nag_pde_parab_1d_coll_ode (d03pjc) Example Program Results

Simple coupled PDE using BDF

Degree of Polynomial = 3
Number of elements = 29
Accuracy requirement = 1.000e-05
Number of points = 88

time solution at x=0
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0.2 0.22
0.4 0.49
0.8 1.23
1.6 3.95
3.2 23.53

Example Program
Parabolic PDE Coupled with ODE using Collocation and BDF
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