
NAG Library Function Document

nag_quad_2d_fin (d01dac)

1 Purpose

nag_quad_2d_fin (d01dac) attempts to evaluate a double integral to a specified absolute accuracy by
repeated applications of the method described by Patterson (1968) and Patterson (1969).

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_2d_fin (double ya, double yb,

double (*phi1)(double y, Nag_Comm *comm),

double (*phi2)(double y, Nag_Comm *comm),

double (*f)(double x, double y, Nag_Comm *comm),

double absacc, double *ans, Integer *npts, Nag_Comm *comm,
NagError *fail)

3 Description

nag_quad_2d_fin (d01dac) attempts to evaluate a definite integral of the form

I ¼
Z b

a

Z �2 yð Þ

�1 yð Þ
f x; yð Þ dx dy

where a and b are constants and �1 yð Þ and �2 yð Þ are functions of the variable y.

The integral is evaluated by expressing it as

I ¼
Z b

a

F yð Þ dy; where F yð Þ ¼
Z �2 yð Þ

�1 yð Þ
f x; yð Þ dx:

Both the outer integral I and the inner integrals F yð Þ are evaluated by the method, described by
Patterson (1968) and Patterson (1969), of the optimum addition of points to Gauss quadrature formulae.

This method uses a family of interlacing common point formulae. Beginning with the 3-point Gauss
rule, formulae using 7, 15, 31, 63, 127 and finally 255 points are derived. Each new formula contains all
the points of the earlier formulae so that no function evaluations are wasted. Each integral is evaluated
by applying these formulae successively until two results are obtained which differ by less than the
specified absolute accuracy.

4 References

Patterson T N L (1968) On some Gauss and Lobatto based integration formulae Math. Comput. 22
877–881

Patterson T N L (1969) The optimum addition of points to quadrature formulae, errata Math. Comput.
23 892

5 Arguments

1: ya – double Input

On entry: a, the lower limit of the integral.

d01 – Quadrature d01dac

Mark 26 d01dac.1

2: yb – double Input

On entry: b, the upper limit of the integral. It is not necessary that a < b.

3: phi1 – function, supplied by the user External Function

phi1 must return the lower limit of the inner integral for a given value of y.

The specification of phi1 is:

double phi1 (double y, Nag_Comm *comm)

1: y – double Input

On entry: the value of y for which the lower limit must be evaluated.

2: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to phi1.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_2d_fin (d01dac) you
may allocate memory and initialize these pointers with various quantities for use
by phi1 when called from nag_quad_2d_fin (d01dac) (see Section 2.3.1.1 in How
to Use the NAG Library and its Documentation).

4: phi2 – function, supplied by the user External Function

phi2 must return the upper limit of the inner integral for a given value of y.

The specification of phi2 is:

double phi2 (double y, Nag_Comm *comm)

1: y – double Input

On entry: the value of y for which the upper limit must be evaluated.

2: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to phi2.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_2d_fin (d01dac) you
may allocate memory and initialize these pointers with various quantities for use
by phi2 when called from nag_quad_2d_fin (d01dac) (see Section 2.3.1.1 in How
to Use the NAG Library and its Documentation).

5: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

The specification of f is:

double f (double x, double y, Nag_Comm *comm)

d01dac NAG Library Manual

d01dac.2 Mark 26

1: x – double Input
2: y – double Input

On entry: the coordinates of the point x; yð Þ at which the integrand f must be evaluated.

3: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to f.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_2d_fin (d01dac) you
may allocate memory and initialize these pointers with various quantities for use
by f when called from nag_quad_2d_fin (d01dac) (see Section 2.3.1.1 in How to
Use the NAG Library and its Documentation).

6: absacc – double Input

On entry: the absolute accuracy requested.

7: ans – double * Output

On exit: the estimated value of the integral.

8: npts – Integer * Output

On exit: the total number of function evaluations.

9: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

10: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

The outer integral has converged, but n of the inner integrals have not converged with 255
points: n ¼ valueh i. ans may still contain an approximate estimate of the integral, but its
reliability will decrease as n increases.

The outer integral has not converged, and n of the inner integrals have not converged with 255
points: n ¼ valueh i. ans may still contain an approximate estimate of the integral, but its
reliability will decrease as n increases.

d01 – Quadrature d01dac

Mark 26 d01dac.3

The outer integral has not converged with 255 points. However, all the inner integrals have
converged, and ans may still contain an approximate estimate of the integral.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The absolute accuracy is specified by the variable absacc. If, on exit, fail:code ¼ NE_NOERROR then
the result is most likely correct to this accuracy. Even if fail:code ¼ NE_CONVERGENCE on exit, it is
still possible that the calculated result could differ from the true value by less than the given accuracy.

8 Parallelism and Performance

nag_quad_2d_fin (d01dac) is threaded by NAG for parallel execution in multithreaded implementations
of the NAG Library.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Notefor your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by nag_quad_2d_fin (d01dac) depends upon the complexity of the integrand and the
accuracy requested.

With Patterson's method accidental convergence may occasionally occur, when two estimates of an
integral agree to within the requested accuracy, but both estimates differ considerably from the true
result. This could occur in either the outer integral or in one or more of the inner integrals.

If it occurs in the outer integral then apparent convergence is likely to be obtained with considerably
fewer integrand evaluations than may be expected. If it occurs in an inner integral, the incorrect value
could make the function F yð Þ appear to be badly behaved, in which case a very large number of pivots
may be needed for the overall evaluation of the integral. Thus both unexpectedly small and
unexpectedly large numbers of integrand evaluations should be considered as indicating possible
trouble. If accidental convergence is suspected, the integral may be recomputed, requesting better
accuracy; if the new request is more stringent than the degree of accidental agreement (which is of
course unknown), improved results should be obtained. This is only possible when the accidental
agreement is not better than machine accuracy. It should be noted that the function requests the same
accuracy for the inner integrals as for the outer integral. In practice it has been found that in the vast
majority of cases this has proved to be adequate for the overall result of the double integral to be
accurate to within the specified value.

The function is not well-suited to non-smooth integrands, i.e., integrands having some kind of analytic
discontinuity (such as a discontinuous or infinite partial derivative of some low-order) in, on the
boundary of, or near, the region of integration. Warning: such singularities may be induced by
incautiously presenting an apparently smooth interval over the positive quadrant of the unit circle, R

I ¼
Z
R

xþ yð Þ dx dy:

This may be presented to nag_quad_2d_fin (d01dac) as

d01dac NAG Library Manual

d01dac.4 Mark 26

I ¼
Z 1

0
dy

Z ffiffiffiffiffiffiffiffi
1�y2

p

0
xþ yð Þ dx ¼

Z 1

0

1
2 1� y2
� �þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p� �
dy

but here the outer integral has an induced square-root singularity stemming from the way the region has
been presented to nag_quad_2d_fin (d01dac). This situation should be avoided by re-casting the
problem. For the example given, the use of polar coordinates would avoid the difficulty:

I ¼
Z 1

0
dr

Z �
2

0
r2 cos �þ sin �ð Þ d�:

10 Example

This example evaluates the integral discussed in Section 9, presenting it to nag_quad_2d_fin (d01dac)
first as

Z 1

0

Z ffiffiffiffiffiffiffiffi
1�y2

p

0
xþ yð Þ dx dy

and then as
Z 1

0

Z �
2

0
r2 cos �þ sin �ð Þ d� dr:

Note the difference in the number of function evaluations.

10.1 Program Text

/* nag_quad_2d_fin (d01dac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C"
{
#endif

static double NAG_CALL phi1(double y, Nag_Comm *comm);
static double NAG_CALL phi2a(double y, Nag_Comm *comm);
static double NAG_CALL fa(double x, double y, Nag_Comm *comm);
static double NAG_CALL phi2b(double y, Nag_Comm *comm);
static double NAG_CALL fb(double x, double y, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[5] = { -1.0, -1.0, -1.0, -1.0, -1.0 };
Integer exit_status = 0;
Integer npts, i;
double absacc, ans, ya, yb;
Nag_Comm comm;
NagError fail;

d01 – Quadrature d01dac

Mark 26 d01dac.5

INIT_FAIL(fail);

printf("nag_quad_2d_fin (d01dac) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Input arguments */
#ifdef _WIN32

scanf_s("%lf %lf", &ya, &yb);
#else

scanf("%lf %lf", &ya, &yb);
#endif
#ifdef _WIN32

scanf_s("%lf", &absacc);
#else

scanf("%lf", &absacc);
#endif

for (i = 1; i <= 2; i++) {
/* nag_quad_2d_fin (d01dac).
* Two-dimensional quadrature over a finite region.
*/

switch (i) {
case 1:

printf("\nFirst formulation\n");
nag_quad_2d_fin(ya, yb, phi1, phi2a, fa, absacc, &ans, &npts,

&comm, &fail);
break;

case 2:
printf("\nSecond formulation\n");
nag_quad_2d_fin(ya, yb, phi1, phi2b, fb, absacc, &ans, &npts,

&comm, &fail);
break;

}
if (fail.code != NE_NOERROR) {

printf("Error from nag_quad_2d_fin (d01dac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

printf("Integral = %9.4f\n"
"Number of function evaluations = %5" NAG_IFMT "\n", ans, npts);

}

END:
return exit_status;

}

static double NAG_CALL phi1(double y, Nag_Comm *comm)
{

if (comm->user[0] == -1.0) {
printf("(User-supplied callback phi1, first invocation.)\n");
comm->user[0] = 0.0;

}
return 0.0;

}

static double NAG_CALL phi2a(double y, Nag_Comm *comm)
{

if (comm->user[1] == -1.0) {
printf("(User-supplied callback phi2a, first invocation.)\n");
comm->user[1] = 0.0;

}

d01dac NAG Library Manual

d01dac.6 Mark 26

return (sqrt(1.0 - pow(y, 2)));
}

static double NAG_CALL fa(double x, double y, Nag_Comm *comm)
{

if (comm->user[2] == -1.0) {
printf("(User-supplied callback fa, first invocation.)\n");
comm->user[2] = 0.0;

}
return (x + y);

}

static double NAG_CALL phi2b(double y, Nag_Comm *comm)
{

if (comm->user[3] == -1.0) {
printf("(User-supplied callback phi2b, first invocation.)\n");
comm->user[3] = 0.0;

}
return (0.5 * nag_pi);

}

static double NAG_CALL fb(double x, double y, Nag_Comm *comm)
{

if (comm->user[4] == -1.0) {
printf("(User-supplied callback fb, first invocation.)\n");
comm->user[4] = 0.0;

}
return (pow(y, 2) * (cos(x) + sin(x)));

}

10.2 Program Data

None.

10.3 Program Results

nag_quad_2d_fin (d01dac) Example Program Results

First formulation
(User-supplied callback phi1, first invocation.)
(User-supplied callback phi2a, first invocation.)
(User-supplied callback fa, first invocation.)
Integral = 0.6667
Number of function evaluations = 189

Second formulation
(User-supplied callback phi2b, first invocation.)
(User-supplied callback fb, first invocation.)
Integral = 0.6667
Number of function evaluations = 89

d01 – Quadrature d01dac

Mark 26 d01dac.7 (last)

	d01dac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Patterson (1968)
	Patterson (1969)

	5 Arguments
	ya
	yb
	phi1
	y
	comm
	user
	iuser
	p

	phi2
	y
	comm
	user
	iuser
	p

	f
	x
	y
	comm
	user
	iuser
	p

	absacc
	ans
	npts
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_INTERNAL_ERROR
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

