f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_zher2k (f16zrc)

## 1  Purpose

nag_zher2k (f16zrc) performs a rank-$2k$ update on a complex Hermitian matrix.

## 2  Specification

 #include #include
 void nag_zher2k (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Integer n, Integer k, Complex alpha, const Complex a[], Integer pda, const Complex b[], Integer pdb, double beta, Complex c[], Integer pdc, NagError *fail)

## 3  Description

nag_zher2k (f16zrc) performs one of the Hermitian rank-$2k$ update operations
 $C←αABH + α-AH + βC or C←α-AHB + αBHA + β C ,$
where $A$ and $B$ are complex matrices, $C$ is an $n$ by $n$ complex Hermitian matrix, $\alpha$ is a complex scalar, and $\beta$ is a real scalar.

## 4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5  Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of $C$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
The upper triangular part of $C$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
The lower triangular part of $C$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:    $\mathbf{trans}$Nag_TransTypeInput
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$C←\alpha {B}^{\mathrm{H}}A+\stackrel{-}{\alpha }B{A}^{\mathrm{H}}+\beta C$.
${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$
$C←\stackrel{-}{\alpha }{A}^{\mathrm{H}}B+\alpha {B}^{\mathrm{H}}A+\beta C$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ or $\mathrm{Nag_ConjTrans}$.
4:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrix $C$; the number of rows of $A$ and $B$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or the number of columns of $A$ and $B$ otherwise.
Constraint: ${\mathbf{n}}\ge 0$.
5:    $\mathbf{k}$IntegerInput
On entry: $k$, the number of columns of $A$ and $B$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or the number of rows of $A$ and $B$ otherwise.
Constraint: ${\mathbf{k}}\ge 0$.
6:    $\mathbf{alpha}$ComplexInput
On entry: the scalar $\alpha$.
7:    $\mathbf{a}\left[\mathit{dim}\right]$const ComplexInput
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{k}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pda}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}×{\mathbf{pda}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
On entry: the matrix $A$; $A$ is $n$ by $k$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or $k$ by $n$ otherwise.
8:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$,
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$,
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9:    $\mathbf{b}\left[\mathit{dim}\right]$const ComplexInput
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{k}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{n}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}×{\mathbf{pdb}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${B}_{ij}$ is stored in ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$.
On entry: the matrix $B$; $B$ is $n$ by $k$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or $k$ by $n$ otherwise.
10:  $\mathbf{pdb}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$,
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$,
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
11:  $\mathbf{beta}$doubleInput
On entry: the scalar $\beta$.
12:  $\mathbf{c}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array c must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdc}}×{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ Hermitian matrix $C$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${C}_{ij}$ is stored in ${\mathbf{c}}\left[\left(j-1\right)×{\mathbf{pdc}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${C}_{ij}$ is stored in ${\mathbf{c}}\left[\left(i-1\right)×{\mathbf{pdc}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $C$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $C$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix $C$. The imaginary parts of the diagonal elements are set to zero.
13:  $\mathbf{pdc}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $C$ in the array c.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
14:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_ENUM_INT_2
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{k}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{k}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{k}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{k}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_ConjTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INT
On entry, ${\mathbf{k}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{k}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pdc}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8  Parallelism and Performance

nag_zher2k (f16zrc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zher2k (f16zrc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

None.

## 10  Example

Perform rank-$2k$ update of complex Hermitian $4$ by $4$ matrix $C$ using $4$ by $2$ matrices $A$ and $B$, $C=-C+\left(-0.5+0.5i\right)A{B}^{\mathrm{T}}+\left(-0.5-0.5i\right)B{A}^{\mathrm{T}}$, where
 $C = 4.78+0.00i 2.00+0.30i 2.89+1.34i -1.89-1.15i 2.00-0.30i -4.11+0.00i 2.36+4.25i 0.04+3.69i 2.89-1.34i 2.36-4.25i 4.15+0.00i -0.02-0.46i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33+0.00i ,$
 $A = 1.7-2.3i -1.8+2.4i 2.9-2.1i 1.2+1.4i -2.9+1.0i 0.6+0.8i 1.5+0.9i -1.4-1.7i -0.3-1.9i 2.1-1.1i$
and
 $B = -2.4+1.4i 0.6-2.9i -0.2-2.9i -1.5+0.1i 3.5+0.8i 2.2+3.7i .$

### 10.1  Program Text

Program Text (f16zrce.c)

### 10.2  Program Data

Program Data (f16zrce.d)

### 10.3  Program Results

Program Results (f16zrce.r)