```
E04RXF Example Program Results

----------------------------------------------
E04MT, Interior point method for LP problems
----------------------------------------------

Begin of Options
Infinite Bound Size           =         1.00000E+20     * d
Print File                    =                   6     * d
Print Level                   =                   2     * d
Print Options                 =                 Yes     * d
Print Solution                =                   X     * U
Monitoring File               =                  -1     * d
Monitoring Level              =                   4     * d
Stats Time                    =                  No     * d
Lpipm Centrality Correctors   =                   6     * d
Lp Presolve                   =                 Yes     * d
Lpipm Scaling                 =          Arithmetic     * d
Lpipm System Formulation      =                Auto     * d
Lpipm Algorithm               =         Primal-dual     * d
Lpipm Stop Tolerance          =         1.05367E-08     * d
Lpipm Monitor Frequency       =                   1     * U
Lpipm Stop Tolerance 2        =         2.67452E-10     * d
Lpipm Max Iterative Refinement=                   5     * d
Lpipm Iteration Limit         =                 100     * d
End of Options

Original Problem Statistics

Number of variables          7
Number of constraints        7
Free variables               0
Number of nonzeros          41

Presolved Problem Statistics

Number of variables         13
Number of constraints        7
Free variables               0
Number of nonzeros          47

------------------------------------------------------------------------------
it|    pobj    |    dobj    |  optim  |  feas   |  compl  |   mu   | mcc | I
------------------------------------------------------------------------------
0 -7.86591E-02  1.71637E-02  1.27E+00  1.06E+00  8.89E-02  1.5E-01
1  5.74135E-03 -2.24369E-02  6.11E-16  1.75E-01  2.25E-02  2.8E-02   0
2  1.96803E-02  1.37067E-02  5.06E-16  2.28E-02  2.91E-03  3.4E-03   0
3  2.15232E-02  1.96162E-02  7.00E-15  9.24E-03  1.44E-03  1.7E-03   0
4  2.30321E-02  2.28676E-02  1.15E-15  2.21E-03  2.97E-04  3.4E-04   0

monit() reports good approximate solution (tol = 1.00E-03):
X1: -9.99E-03
X2: -1.00E-01
X3:  3.00E-02
X4:  2.00E-02
X5: -6.73E-02
X6: -2.35E-03
X7: -2.27E-04
End of monit()
5  2.35658E-02  2.35803E-02  1.32E-15  1.02E-04  8.41E-06  9.6E-06   0

monit() reports good approximate solution (tol = 1.00E-03):
X1: -1.00E-02
X2: -1.00E-01
X3:  3.00E-02
X4:  2.00E-02
X5: -6.75E-02
X6: -2.28E-03
X7: -2.35E-04
End of monit()
6  2.35965E-02  2.35965E-02  1.64E-15  7.02E-08  6.35E-09  7.2E-09   0

monit() reports good approximate solution (tol = 1.00E-03):
X1: -1.00E-02
X2: -1.00E-01
X3:  3.00E-02
X4:  2.00E-02
X5: -6.75E-02
X6: -2.28E-03
X7: -2.35E-04
End of monit()
7  2.35965E-02  2.35965E-02  1.35E-15  3.52E-11  3.18E-12  3.6E-12   0
------------------------------------------------------------------------------
Status: converged, an optimal solution found
------------------------------------------------------------------------------
Final primal objective value         2.359648E-02
Final dual objective value           2.359648E-02
Absolute primal infeasibility        4.168797E-15
Relative primal infeasibility        1.350467E-15
Absolute dual infeasibility          5.084353E-11
Relative dual infeasibility          3.518607E-11
Absolute complementarity gap         2.685778E-11
Relative complementarity gap         3.175366E-12
Iterations                                      7

Primal variables:
idx   Lower bound        Value      Upper bound
1  -1.00000E-02   -1.00000E-02    1.00000E-02
2  -1.00000E-01   -1.00000E-01    1.50000E-01
3  -1.00000E-02    3.00000E-02    3.00000E-02
4  -4.00000E-02    2.00000E-02    2.00000E-02
5  -1.00000E-01   -6.74853E-02    5.00000E-02
6  -1.00000E-02   -2.28013E-03         inf
7  -1.00000E-02   -2.34528E-04         inf
```