# NAG C Library Function Document

## 1Purpose

nag_zsyrk (f16zuc) performs a rank-$k$ update on a complex symmetric matrix.

## 2Specification

 #include #include
 void nag_zsyrk (Nag_OrderType order, Nag_UploType uplo, Nag_TransType trans, Integer n, Integer k, Complex alpha, const Complex a[], Integer pda, Complex beta, Complex c[], Integer pdc, NagError *fail)

## 3Description

nag_zsyrk (f16zuc) performs one of the symmetric rank-$k$ update operations
 $C←αAAT + βC or C←αATA + βC ,$
where $A$ is a complex matrix, $C$ is an $n$ by $n$ complex symmetric matrix, and $\alpha$ and $\beta$ are complex scalars.

## 4References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

## 5Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: specifies whether the upper or lower triangular part of $C$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
The upper triangular part of $C$ is stored.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
The lower triangular part of $C$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:    $\mathbf{trans}$Nag_TransTypeInput
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\mathrm{Nag_NoTrans}$
$C←\alpha A{A}^{\mathrm{T}}+\beta C$.
${\mathbf{trans}}=\mathrm{Nag_Trans}$
$C←\alpha {A}^{\mathrm{T}}A+\beta C$.
Constraint: ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ or $\mathrm{Nag_Trans}$.
4:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrix $C$; the number of rows of $A$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or the number of columns of $A$ otherwise.
Constraint: ${\mathbf{n}}\ge 0$.
5:    $\mathbf{k}$IntegerInput
On entry: $k$, the number of columns of $A$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or the number of rows of $A$ otherwise.
Constraint: ${\mathbf{k}}\ge 0$.
6:    $\mathbf{alpha}$ComplexInput
On entry: the scalar $\alpha$.
7:    $\mathbf{a}\left[\mathit{dim}\right]$const ComplexInput
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{k}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pda}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_Trans}$ and ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}×{\mathbf{pda}}\right)$ when ${\mathbf{trans}}=\mathrm{Nag_Trans}$ and ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
On entry: the matrix $A$; $A$ is $n$ by $k$ if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, or $k$ by $n$ otherwise.
8:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$,
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_Trans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$,
• if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$;
• if ${\mathbf{trans}}=\mathrm{Nag_Trans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
9:    $\mathbf{beta}$ComplexInput
On entry: the scalar $\beta$.
10:  $\mathbf{c}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array c must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdc}}×{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ symmetric matrix $C$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${C}_{ij}$ is stored in ${\mathbf{c}}\left[\left(j-1\right)×{\mathbf{pdc}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${C}_{ij}$ is stored in ${\mathbf{c}}\left[\left(i-1\right)×{\mathbf{pdc}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $C$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $C$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix $C$.
11:  $\mathbf{pdc}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $C$ in the array c.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
12:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_ENUM_INT_2
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{k}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{k}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_Trans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_NoTrans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{trans}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{trans}}=\mathrm{Nag_Trans}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INT
On entry, ${\mathbf{k}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{k}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INT_2
On entry, ${\mathbf{pdc}}=〈\mathit{\text{value}}〉$, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

## 8Parallelism and Performance

nag_zsyrk (f16zuc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

None.

## 10Example

Perform rank-$k$ update of complex symmetric $4$ by $4$ matrix $C$ using $4$ by $2$ matrix $A$ ($k=2$), $C=C-\left(1.0-1.0i\right)A{A}^{\mathrm{T}}$, where
 $C = 4.78+1.03i 2.00-0.30i 2.89-1.34i -1.89+1.15i 2.00-0.30i -4.11-2.30i 2.36-4.25i 0.04-3.69i 2.89-1.34i 2.36-4.25i 4.15+0.57i -0.02+0.46i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33-1.91i$
and
 $A = 1.7-2.3i -1.8+2.4i 2.9-2.1i 1.2+1.4i -2.9+1.0i 0.6+0.8i 1.5+0.9i -1.4-1.7i .$

### 10.1Program Text

Program Text (f16zuce.c)

### 10.2Program Data

Program Data (f16zuce.d)

### 10.3Program Results

Program Results (f16zuce.r)