# NAG C Library Function Document

## 1Purpose

nag_zheevr (f08frc) computes selected eigenvalues and, optionally, eigenvectors of a complex $n$ by $n$ Hermitian matrix $A$. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## 2Specification

 #include #include
 void nag_zheevr (Nag_OrderType order, Nag_JobType job, Nag_RangeType range, Nag_UploType uplo, Integer n, Complex a[], Integer pda, double vl, double vu, Integer il, Integer iu, double abstol, Integer *m, double w[], Complex z[], Integer pdz, Integer isuppz[], NagError *fail)

## 3Description

The Hermitian matrix is first reduced to a real tridiagonal matrix $T$, using unitary similarity transformations. Then whenever possible, nag_zheevr (f08frc) computes the eigenspectrum using Relatively Robust Representations. nag_zheevr (f08frc) computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various ‘good’ $LD{L}^{\mathrm{T}}$ representations (also known as Relatively Robust Representations). Gram–Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the $i$th unreduced block of $T$:
 (a) compute $T-{\sigma }_{i}I={L}_{i}{D}_{i}{L}_{i}^{\mathrm{T}}$, such that ${L}_{i}{D}_{i}{L}_{i}^{\mathrm{T}}$ is a relatively robust representation, (b) compute the eigenvalues, ${\lambda }_{j}$, of ${L}_{i}{D}_{i}{L}_{i}^{\mathrm{T}}$ to high relative accuracy by the dqds algorithm, (c) if there is a cluster of close eigenvalues, ‘choose’ ${\sigma }_{i}$ close to the cluster, and go to (a), (d) given the approximate eigenvalue ${\lambda }_{j}$ of ${L}_{i}{D}_{i}{L}_{i}^{\mathrm{T}}$, compute the corresponding eigenvector by forming a rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the argument abstol. For more details, see Dhillon (1997) and Parlett and Dhillon (2000).

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Barlow J and Demmel J W (1990) Computing accurate eigensystems of scaled diagonally dominant matrices SIAM J. Numer. Anal. 27 762–791
Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912
Dhillon I (1997) A new $\mathit{O}\left({n}^{2}\right)$ algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem Computer Science Division Technical Report No. UCB//CSD-97-971 UC Berkeley
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Parlett B N and Dhillon I S (2000) Relatively robust representations of symmetric tridiagonals Linear Algebra Appl. 309 121–151

## 5Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{job}$Nag_JobTypeInput
On entry: indicates whether eigenvectors are computed.
${\mathbf{job}}=\mathrm{Nag_EigVals}$
Only eigenvalues are computed.
${\mathbf{job}}=\mathrm{Nag_DoBoth}$
Eigenvalues and eigenvectors are computed.
Constraint: ${\mathbf{job}}=\mathrm{Nag_EigVals}$ or $\mathrm{Nag_DoBoth}$.
3:    $\mathbf{range}$Nag_RangeTypeInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_AllValues}$, all eigenvalues will be found.
If ${\mathbf{range}}=\mathrm{Nag_Interval}$, all eigenvalues in the half-open interval $\left({\mathbf{vl}},{\mathbf{vu}}\right]$ will be found.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, the ilth to iuth eigenvalues will be found.
For ${\mathbf{range}}=\mathrm{Nag_Interval}$ or $\mathrm{Nag_Indices}$ and ${\mathbf{iu}}-{\mathbf{il}}<{\mathbf{n}}-1$, nag_dstebz (f08jjc) and nag_zstein (f08jxc) are called.
Constraint: ${\mathbf{range}}=\mathrm{Nag_AllValues}$, $\mathrm{Nag_Interval}$ or $\mathrm{Nag_Indices}$.
4:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ is stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
5:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
6:    $\mathbf{a}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ Hermitian matrix $A$.
If ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$.
If ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${A}_{ij}$ is stored in ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ must be stored and the elements of the array below the diagonal are not referenced.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the lower triangle (if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$) or the upper triangle (if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$) of a, including the diagonal, is overwritten.
7:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
8:    $\mathbf{vl}$doubleInput
9:    $\mathbf{vu}$doubleInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, the lower and upper bounds of the interval to be searched for eigenvalues.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Indices}$, vl and vu are not referenced.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
10:  $\mathbf{il}$IntegerInput
11:  $\mathbf{iu}$IntegerInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Indices}$, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Interval}$, il and iu are not referenced.
Constraints:
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
12:  $\mathbf{abstol}$doubleInput
On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $\left[a,b\right]$ of width less than or equal to
 $abstol+ε maxa,b ,$
where $\epsilon$ is the machine precision. If abstol is less than or equal to zero, then $\epsilon {‖T‖}_{1}$ will be used in its place, where $T$ is the real tridiagonal matrix obtained by reducing $A$ to tridiagonal form. See Demmel and Kahan (1990).
If high relative accuracy is important, set abstol to , although doing so does not currently guarantee that eigenvalues are computed to high relative accuracy. See Barlow and Demmel (1990) for a discussion of which matrices can define their eigenvalues to high relative accuracy.
13:  $\mathbf{m}$Integer *Output
On exit: the total number of eigenvalues found. $0\le {\mathbf{m}}\le {\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$, ${\mathbf{m}}={\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, ${\mathbf{m}}={\mathbf{iu}}-{\mathbf{il}}+1$.
14:  $\mathbf{w}\left[\mathit{dim}\right]$doubleOutput
Note: the dimension, dim, of the array w must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On exit: the first m elements contain the selected eigenvalues in ascending order.
15:  $\mathbf{z}\left[\mathit{dim}\right]$ComplexOutput
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, the first m columns of $Z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$th column of $Z$ holding the eigenvector associated with ${\mathbf{w}}\left[i-1\right]$.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, z is not referenced.
16:  $\mathbf{pdz}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
17:  $\mathbf{isuppz}\left[\mathit{dim}\right]$IntegerOutput
Note: the dimension, dim, of the array isuppz must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,2×{\mathbf{m}}\right)$.
On exit: the support of the eigenvectors in z, i.e., the indices indicating the nonzero elements in z. The $i$th eigenvector is nonzero only in elements ${\mathbf{isuppz}}\left[2×i-2\right]$ through ${\mathbf{isuppz}}\left[2×i-1\right]$. Implemented only for ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Indices}$ and ${\mathbf{iu}}-{\mathbf{il}}={\mathbf{n}}-1$.
18:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_BAD_PARAM
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_CONVERGENCE
nag_zheevr (f08frc) failed to converge.
NE_ENUM_INT_2
On entry, ${\mathbf{job}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_ENUM_INT_3
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{il}}=〈\mathit{\text{value}}〉$, ${\mathbf{iu}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
NE_ENUM_REAL_2
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{vl}}=〈\mathit{\text{value}}〉$ and ${\mathbf{vu}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

## 7Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

## 8Parallelism and Performance

nag_zheevr (f08frc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_zheevr (f08frc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

## 9Further Comments

The total number of floating-point operations is proportional to ${n}^{3}$.
The real analogue of this function is nag_dsyevr (f08fdc).

## 10Example

This example finds the eigenvalues with indices in the range $\left[2,3\right]$, and the corresponding eigenvectors, of the Hermitian matrix
 $A = 1 2-i 3-i 4-i 2+i 2 3-2i 4-2i 3+i 3+2i 3 4-3i 4+i 4+2i 4+3i 4 .$

### 10.1Program Text

Program Text (f08frce.c)

### 10.2Program Data

Program Data (f08frce.d)

### 10.3Program Results

Program Results (f08frce.r)