# NAG Library Routine Document

## 1Purpose

f07qnf (zspsv) computes the solution to a complex system of linear equations
 $AX=B ,$
where $A$ is an $n$ by $n$ symmetric matrix stored in packed format and $X$ and $B$ are $n$ by $r$ matrices.

## 2Specification

Fortran Interface
 Subroutine f07qnf ( uplo, n, nrhs, ap, ipiv, b, ldb, info)
 Integer, Intent (In) :: n, nrhs, ldb Integer, Intent (Out) :: ipiv(n), info Complex (Kind=nag_wp), Intent (Inout) :: ap(*), b(ldb,*) Character (1), Intent (In) :: uplo
#include nagmk26.h
 void f07qnf_ (const char *uplo, const Integer *n, const Integer *nrhs, Complex ap[], Integer ipiv[], Complex b[], const Integer *ldb, Integer *info, const Charlen length_uplo)
The routine may be called by its LAPACK name zspsv.

## 3Description

f07qnf (zspsv) uses the diagonal pivoting method to factor $A$ as $A=UD{U}^{\mathrm{T}}$ if ${\mathbf{uplo}}=\text{'U'}$ or $A=LD{L}^{\mathrm{T}}$ if ${\mathbf{uplo}}=\text{'L'}$, where $U$ (or $L$) is a product of permutation and unit upper (lower) triangular matrices, $D$ is symmetric and block diagonal with $1$ by $1$ and $2$ by $2$ diagonal blocks. The factored form of $A$ is then used to solve the system of equations $AX=B$.

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

## 5Arguments

1:     $\mathbf{uplo}$ – Character(1)Input
On entry: if ${\mathbf{uplo}}=\text{'U'}$, the upper triangle of $A$ is stored.
If ${\mathbf{uplo}}=\text{'L'}$, the lower triangle of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2:     $\mathbf{n}$ – IntegerInput
On entry: $n$, the number of linear equations, i.e., the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3:     $\mathbf{nrhs}$ – IntegerInput
On entry: $r$, the number of right-hand sides, i.e., the number of columns of the matrix $B$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
4:     $\mathbf{ap}\left(*\right)$ – Complex (Kind=nag_wp) arrayInput/Output
Note: the dimension of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
On entry: the $n$ by $n$ symmetric matrix $A$, packed by columns.
More precisely,
• if ${\mathbf{uplo}}=\text{'U'}$, the upper triangle of $A$ must be stored with element ${A}_{ij}$ in ${\mathbf{ap}}\left(i+j\left(j-1\right)/2\right)$ for $i\le j$;
• if ${\mathbf{uplo}}=\text{'L'}$, the lower triangle of $A$ must be stored with element ${A}_{ij}$ in ${\mathbf{ap}}\left(i+\left(2n-j\right)\left(j-1\right)/2\right)$ for $i\ge j$.
On exit: the block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A=UD{U}^{\mathrm{T}}$ or $A=LD{L}^{\mathrm{T}}$ as computed by f07qrf (zsptrf), stored as a packed triangular matrix in the same storage format as $A$.
5:     $\mathbf{ipiv}\left({\mathbf{n}}\right)$ – Integer arrayOutput
On exit: details of the interchanges and the block structure of $D$. More precisely,
• if ${\mathbf{ipiv}}\left(i\right)=k>0$, ${d}_{ii}$ is a $1$ by $1$ pivot block and the $i$th row and column of $A$ were interchanged with the $k$th row and column;
• if ${\mathbf{uplo}}=\text{'U'}$ and ${\mathbf{ipiv}}\left(i-1\right)={\mathbf{ipiv}}\left(i\right)=-l<0$, $\left(\begin{array}{cc}{d}_{i-1,i-1}& {\stackrel{-}{d}}_{i,i-1}\\ {\stackrel{-}{d}}_{i,i-1}& {d}_{ii}\end{array}\right)$ is a $2$ by $2$ pivot block and the $\left(i-1\right)$th row and column of $A$ were interchanged with the $l$th row and column;
• if ${\mathbf{uplo}}=\text{'L'}$ and ${\mathbf{ipiv}}\left(i\right)={\mathbf{ipiv}}\left(i+1\right)=-m<0$, $\left(\begin{array}{cc}{d}_{ii}& {d}_{i+1,i}\\ {d}_{i+1,i}& {d}_{i+1,i+1}\end{array}\right)$ is a $2$ by $2$ pivot block and the $\left(i+1\right)$th row and column of $A$ were interchanged with the $m$th row and column.
6:     $\mathbf{b}\left({\mathbf{ldb}},*\right)$ – Complex (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array b must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
To solve the equations $Ax=b$, where $b$ is a single right-hand side, b may be supplied as a one-dimensional array with length ${\mathbf{ldb}}=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: the $n$ by $r$ right-hand side matrix $B$.
On exit: if ${\mathbf{info}}={\mathbf{0}}$, the $n$ by $r$ solution matrix $X$.
7:     $\mathbf{ldb}$ – IntegerInput
On entry: the first dimension of the array b as declared in the (sub)program from which f07qnf (zspsv) is called.
Constraint: ${\mathbf{ldb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
8:     $\mathbf{info}$ – IntegerOutput
On exit: ${\mathbf{info}}=0$ unless the routine detects an error (see Section 6).

## 6Error Indicators and Warnings

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.
${\mathbf{info}}>0$
Element $〈\mathit{\text{value}}〉$ of the diagonal is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution could not be computed.

## 7Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 $A+E x^=b ,$
where
 $E1 = Oε A1$
and $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 $x^-x1 x1 ≤ κA E1 A1 ,$
where $\kappa \left(A\right)={‖{A}^{-1}‖}_{1}{‖A‖}_{1}$, the condition number of $A$ with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) and Chapter 11 of Higham (2002) for further details.
f07qpf (zspsvx) is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, f04djf solves $AX=B$ and returns a forward error bound and condition estimate. f04djf calls f07qnf (zspsv) to solve the equations.

## 8Parallelism and Performance

f07qnf (zspsv) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is approximately $\frac{4}{3}{n}^{3}+8{n}^{2}r$, where $r$ is the number of right-hand sides.
The real analogue of this routine is f07paf (dspsv). The complex Hermitian analogue of this routine is f07pnf (zhpsv).

## 10Example

This example solves the equations
 $Ax=b ,$
where $A$ is the complex symmetric matrix
 $A = -0.56+0.12i -1.54-2.86i 5.32-1.59i 3.80+0.92i -1.54-2.86i -2.83-0.03i -3.52+0.58i -7.86-2.96i 5.32-1.59i -3.52+0.58i 8.86+1.81i 5.14-0.64i 3.80+0.92i -7.86-2.96i 5.14-0.64i -0.39-0.71i$
and
 $b = -6.43+19.24i -0.49-01.47i -48.18+66.00i -55.64+41.22i .$
Details of the factorization of $A$ are also output.

### 10.1Program Text

Program Text (f07qnfe.f90)

### 10.2Program Data

Program Data (f07qnfe.d)

### 10.3Program Results

Program Results (f07qnfe.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017