# NAG Library Routine Document

## 1Purpose

f06zuf (zsyrk) performs one of the symmetric rank-$k$ update operations
 $C←αAAT + βC or C←αATA + βC ,$
where $A$ is a complex matrix, $C$ is an $n$ by $n$ complex symmetric matrix, and $\alpha$ and $\beta$ are complex scalars.

## 2Specification

Fortran Interface
 Subroutine f06zuf ( uplo, n, k, a, lda, beta, c, ldc)
 Integer, Intent (In) :: n, k, lda, ldc Complex (Kind=nag_wp), Intent (In) :: alpha, a(lda,*), beta Complex (Kind=nag_wp), Intent (Inout) :: c(ldc,*) Character (1), Intent (In) :: uplo, trans
#include nagmk26.h
 void f06zuf_ (const char *uplo, const char *trans, const Integer *n, const Integer *k, const Complex *alpha, const Complex a[], const Integer *lda, const Complex *beta, Complex c[], const Integer *ldc, const Charlen length_uplo, const Charlen length_trans)
The routine may be called by its BLAS name zsyrk.

None.
None.

## 5Arguments

1:     $\mathbf{uplo}$ – Character(1)Input
On entry: specifies whether the upper or lower triangular part of $C$ is stored.
${\mathbf{uplo}}=\text{'U'}$
The upper triangular part of $C$ is stored.
${\mathbf{uplo}}=\text{'L'}$
The lower triangular part of $C$ is stored.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2:     $\mathbf{trans}$ – Character(1)Input
On entry: specifies the operation to be performed.
${\mathbf{trans}}=\text{'N'}$
$C←\alpha A{A}^{\mathrm{T}}+\beta C$.
${\mathbf{trans}}=\text{'T'}$
$C←\alpha {A}^{\mathrm{T}}A+\beta C$.
Constraint: ${\mathbf{trans}}=\text{'N'}$ or $\text{'T'}$.
3:     $\mathbf{n}$ – IntegerInput
On entry: $n$, the order of the matrix $C$; the number of rows of $A$ and $B$ if ${\mathbf{trans}}=\text{'N'}$, or the number of columns of $A$ and $B$ if ${\mathbf{trans}}=\text{'T'}$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     $\mathbf{k}$ – IntegerInput
On entry: $k$, the number of columns of $A$ and $B$ if ${\mathbf{trans}}=\text{'N'}$, or the number of rows of $A$ and $B$ if ${\mathbf{trans}}=\text{'T'}$.
Constraint: ${\mathbf{k}}\ge 0$.
5:     $\mathbf{alpha}$ – Complex (Kind=nag_wp)Input
On entry: the scalar $\alpha$.
6:     $\mathbf{a}\left({\mathbf{lda}},*\right)$ – Complex (Kind=nag_wp) arrayInput
Note: the second dimension of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$ if ${\mathbf{trans}}=\text{'N'}$ and at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$ if ${\mathbf{trans}}=\text{'T'}$.
On entry: the matrix $A$; $A$ is $n$ by $k$ if ${\mathbf{trans}}=\text{'N'}$, or $k$ by $n$ if ${\mathbf{trans}}=\text{'T'}$.
7:     $\mathbf{lda}$ – IntegerInput
On entry: the first dimension of the array a as declared in the (sub)program from which f06zuf (zsyrk) is called.
Constraints:
• if ${\mathbf{trans}}=\text{'N'}$, ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{trans}}=\text{'T'}$, ${\mathbf{lda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{k}}\right)$.
8:     $\mathbf{beta}$ – Complex (Kind=nag_wp)Input
On entry: the scalar $\beta$.
9:     $\mathbf{c}\left({\mathbf{ldc}},*\right)$ – Complex (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array c must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: the $n$ by $n$ symmetric matrix $C$.
• If ${\mathbf{uplo}}=\text{'U'}$, the upper triangular part of $C$ must be stored and the elements of the array below the diagonal are not referenced.
• If ${\mathbf{uplo}}=\text{'L'}$, the lower triangular part of $C$ must be stored and the elements of the array above the diagonal are not referenced.
On exit: the updated matrix $C$.
10:   $\mathbf{ldc}$ – IntegerInput
On entry: the first dimension of the array c as declared in the (sub)program from which f06zuf (zsyrk) is called.
Constraint: ${\mathbf{ldc}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.

None.

Not applicable.

## 8Parallelism and Performance

f06zuf (zsyrk) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.