# NAG Library Function Document

## 1Purpose

nag_prob_2_sample_ks (g01ezc) returns the probability associated with the upper tail of the Kolmogorov–Smirnov two sample distribution.

## 2Specification

 #include #include
 double nag_prob_2_sample_ks (Integer n1, Integer n2, double d, NagError *fail)

## 3Description

Let ${F}_{{n}_{1}}\left(x\right)$ and ${G}_{{n}_{2}}\left(x\right)$ denote the empirical cumulative distribution functions for the two samples, where ${n}_{1}$ and ${n}_{2}$ are the sizes of the first and second samples respectively.
The function nag_prob_2_sample_ks (g01ezc) computes the upper tail probability for the Kolmogorov–Smirnov two sample two-sided test statistic ${D}_{{n}_{1},{n}_{2}}$, where
 $Dn1,n2=supxFn1x-Gn2x.$
The probability is computed exactly if ${n}_{1},{n}_{2}\le 10000$ and $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left({n}_{1},{n}_{2}\right)\le 2500$ using a method given by Kim and Jenrich (1973). For the case where $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({n}_{1},{n}_{2}\right)\le 10%$ of the $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left({n}_{1},{n}_{2}\right)$ and $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({n}_{1},{n}_{2}\right)\le 80$ the Smirnov approximation is used. For all other cases the Kolmogorov approximation is used. These two approximations are discussed in Kim and Jenrich (1973).

## 4References

Conover W J (1980) Practical Nonparametric Statistics Wiley
Feller W (1948) On the Kolmogorov–Smirnov limit theorems for empirical distributions Ann. Math. Statist. 19 179–181
Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) (3rd Edition) Griffin
Kim P J and Jenrich R I (1973) Tables of exact sampling distribution of the two sample Kolmogorov–Smirnov criterion ${D}_{mn}\left(m Selected Tables in Mathematical Statistics 1 80–129 American Mathematical Society
Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw–Hill
Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions Ann. Math. Statist. 19 279–281

## 5Arguments

1:    $\mathbf{n1}$IntegerInput
On entry: the number of observations in the first sample, ${n}_{1}$.
Constraint: ${\mathbf{n1}}\ge 1$.
2:    $\mathbf{n2}$IntegerInput
On entry: the number of observations in the second sample, ${n}_{2}$.
Constraint: ${\mathbf{n2}}\ge 1$.
3:    $\mathbf{d}$doubleInput
On entry: the test statistic ${D}_{{n}_{1},{n}_{2}}$, for the two sample Kolmogorov–Smirnov goodness-of-fit test, that is the maximum difference between the empirical cumulative distribution functions (CDFs) of the two samples.
Constraint: $0.0\le {\mathbf{d}}\le 1.0$.
4:    $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.7 in How to Use the NAG Library and its Documentation).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.
NE_CONVERGENCE
The Smirnov approximation used for large samples did not converge in $200$ iterations. The probability is set to $1.0$.
NE_INT
On entry, ${\mathbf{n1}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n2}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n1}}\ge 1$ and ${\mathbf{n2}}\ge 1$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.
NE_REAL
On entry, ${\mathbf{d}}<0.0$ or ${\mathbf{d}}>1.0$: ${\mathbf{d}}=〈\mathit{\text{value}}〉$.

## 7Accuracy

The large sample distributions used as approximations to the exact distribution should have a relative error of less than 5% for most cases.

## 8Parallelism and Performance

nag_prob_2_sample_ks (g01ezc) is not threaded in any implementation.

The upper tail probability for the one-sided statistics, ${D}_{{n}_{1},{n}_{2}}^{+}$ or ${D}_{{n}_{1},{n}_{2}}^{-}$, can be approximated by halving the two-sided upper tail probability returned by nag_prob_2_sample_ks (g01ezc), that is $p/2$. This approximation to the upper tail probability for either ${D}_{{n}_{1},{n}_{2}}^{+}$ or ${D}_{{n}_{1},{n}_{2}}^{-}$ is good for small probabilities, (e.g., $p\le 0.10$) but becomes poor for larger probabilities.
The time taken by the function increases with ${n}_{1}$ and ${n}_{2}$, until ${n}_{1}{n}_{2}>10000$ or $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left({n}_{1},{n}_{2}\right)\ge 2500$. At this point one of the approximations is used and the time decreases significantly. The time then increases again modestly with ${n}_{1}$ and ${n}_{2}$.

## 10Example

The following example reads in $10$ different sample sizes and values for the test statistic ${D}_{{n}_{1},{n}_{2}}$. The upper tail probability is computed and printed for each case.

### 10.1Program Text

Program Text (g01ezce.c)

### 10.2Program Data

Program Data (g01ezce.d)

### 10.3Program Results

Program Results (g01ezce.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017