```/* nag_zptsv (f07jnc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.1, 2017.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>

int main(void)
{
/* Scalars */
Integer exit_status = 0, i, j, n, nrhs, pdb;

/* Arrays */
Complex *b = 0, *e = 0;
double *d = 0;

/* Nag Types */
NagError fail;
Nag_OrderType order;

#ifdef NAG_COLUMN_MAJOR
#define B(I, J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;
#else
#define B(I, J) b[(I-1)*pdb + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);

printf("nag_zptsv (f07jnc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &n, &nrhs);
if (n < 0 || nrhs < 0) {
printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;
}
/* Allocate memory */
if (!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(e = NAG_ALLOC(n - 1, Complex)) || !(d = NAG_ALLOC(n, double)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}

#ifdef NAG_COLUMN_MAJOR
pdb = n;
#else
pdb = nrhs;
#endif

/* Read the lower bidiagonal part of the tridiagonal matrix A and */
/* the right hand side b from data file */
for (i = 0; i < n; ++i)
scanf("%lf", &d[i]);
scanf("%*[^\n]");
for (i = 0; i < n - 1; ++i)
scanf(" ( %lf , %lf )", &e[i].re, &e[i].im);
scanf("%*[^\n]");

for (i = 1; i <= n; ++i)
for (j = 1; j <= nrhs; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
scanf("%*[^\n]");

/* Solve the equations Ax = b for x using nag_zptsv (f07jnc). */
nag_zptsv(order, n, nrhs, d, e, b, pdb, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zptsv (f07jnc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution */
printf("Solution\n");
for (i = 1; i <= n; ++i) {
for (j = 1; j <= nrhs; ++j)
printf("(%8.4f, %8.4f)%s", B(i, j).re, B(i, j).im,
j % 4 == 0 ? "\n" : " ");
printf("\n");
}

/* Print details of factorization */
printf("\nDiagonal elements of the diagonal matrix D\n");
for (i = 0; i < n; ++i)
printf("%7.4f%s", d[i], i % 8 == 7 ? "\n" : " ");

printf("\n\nSubdiagonal elements of the Cholesky factor L\n");
for (i = 0; i < n - 1; ++i)
printf("(%8.4f, %8.4f)%s", e[i].re, e[i].im, i % 8 == 7 ? "\n" : " ");

END:
NAG_FREE(b);
NAG_FREE(e);
NAG_FREE(d);

return exit_status;
}
```