NAG Library Routine Document
 S30ABF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

S30ABF computes the European option price given by the Black-Scholes-Merton formula together with its sensitivities (Greeks).

2 Specification

```
SUBROUTINE S3OABF (CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, DELTA,
        GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
        COLOUR, ZOMMA, VOMMA, IFAIL)
INTEGER M, N, LDP, IFAIL
REAL (KIND=nag_wp) X(M), S, T(N), SIGMA, R, Q, P(LDP,N), DELTA(LDP,N), &
                        GAMMA(LDP,N), VEGA(LDP,N), THETA(LDP,N), &
                        RHO(LDP,N), CRHO(LDP,N), VANNA(LDP ,N),
                        CHARM(LDP,N), SPEED (LDP,N), COLOUR (LDP,N), &
                                ZOMMA(LDP,N), VOMMA(LDP,N)
CHARACTER(1) CALPUT
```


3 Description

S30ABF computes the price of a European call (or put) option together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters, by the Black-Scholes-Merton formula (see Black and Scholes (1973) and Merton (1973)). The annual volatility, σ, risk-free interest rate, r, and dividend yield, q, must be supplied as input. For a given strike price, X, the price of a European call with underlying price, S, and time to expiry, T, is

$$
P_{\text {call }}=S e^{-q T} \Phi\left(d_{1}\right)-X e^{-r T} \Phi\left(d_{2}\right)
$$

and the corresponding European put price is

$$
P_{\mathrm{put}}=X e^{-r T} \Phi\left(-d_{2}\right)-S e^{-q T} \Phi\left(-d_{1}\right)
$$

and where Φ denotes the cumulative Normal distribution function,

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y
$$

and

$$
\begin{aligned}
& d_{1}=\frac{\ln (S / X)+\left(r-q+\sigma^{2} / 2\right) T}{\sigma \sqrt{T}} \\
& d_{2}=d_{1}-\sigma \sqrt{T}
\end{aligned}
$$

The option price $P_{i j}=P\left(X=X_{i}, T=T_{j}\right)$ is computed for each strike price in a set X_{i}, $i=1,2, \ldots, m$, and for each expiry time in a set $T_{j}, j=1,2, \ldots, n$.

4 References

Black F and Scholes M (1973) The pricing of options and corporate liabilities Journal of Political Economy 81 637-654

Merton R C (1973) Theory of rational option pricing Bell Journal of Economics and Management Science 4 141-183

5 Parameters

1: CALPUT - CHARACTER(1)
On entry: determines whether the option is a call or a put.
CALPUT = 'C'
A call; the holder has a right to buy.
CALPUT $=$ ' P '
A put; the holder has a right to sell.
Constraint: CALPUT $=$ ' C ' or ' P '.
2: M - INTEGER
Input
On entry: the number of strike prices to be used.
Constraint: $\mathrm{M} \geq 1$.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: the number of times to expiry to be used.
Constraint: $\mathrm{N} \geq 1$.

4: $\quad \mathrm{X}(\mathrm{M})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: $\mathrm{X}(i)$ must contain X_{i}, the i th strike price, for $i=1,2, \ldots, \mathrm{M}$.
Constraint: $\mathrm{X}(i) \geq z$ and $\mathrm{X}(i) \leq 1 / z$, where $z=\mathrm{X} 02 \mathrm{AMF}()$, the safe range parameter, for $i=1,2, \ldots, \mathrm{M}$.

5: $\quad \mathrm{S}$ - REAL (KIND=nag_wp) Input
On entry: S, the price of the underlying asset.
Constraint: $\mathrm{S} \geq z$ and $\mathrm{S} \leq 1.0 / z$, where $z=\mathrm{X} 02 \mathrm{AMF}()$, the safe range parameter.

6: $\quad \mathrm{T}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Input
On entry: $\mathrm{T}(i)$ must contain T_{i}, the i th time, in years, to expiry, for $i=1,2, \ldots, \mathrm{~N}$.
Constraint: $\mathrm{T}(i) \geq z$, where $z=\mathrm{X} 02 \mathrm{AMF}()$, the safe range parameter, for $i=1,2, \ldots, \mathrm{~N}$.
7: \quad SIGMA - REAL (KIND=nag_wp)
Input
On entry: σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15 .

Constraint: SIGMA >0.0.

8: $\quad \mathrm{R}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Input
On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05 .

Constraint: $\mathrm{R} \geq 0.0$.

Q - REAL (KIND=nag_wp)
Input
On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08 .
Constraint: $\mathrm{Q} \geq 0.0$.
$\mathrm{P}(\mathrm{LDP}, \mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{P}(i, j)$ contains $P_{i j}$, the option price evaluated for the strike price X_{i} at expiry T_{j} for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

LDP - INTEGER
Input
On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program from which S 30 ABF is called.

Constraint: LDP \geq M.
DELTA(LDP, N) - REAL (KIND=nag_wp) array
Output
On exit: the leading $\mathrm{M} \times \mathrm{N}$ part of the array DELTA contains the sensitivity, $\frac{\partial P}{\partial S}$, of the option price to change in the price of the underlying asset.

13: GAMMA(LDP, N) - REAL (KIND=nag_wp) array
Output
On exit: the leading $\mathrm{M} \times \mathrm{N}$ part of the array GAMMA contains the sensitivity, $\frac{\partial^{2} P}{\partial S^{2}}$, of DELTA to change in the price of the underlying asset.

14: $\quad \mathrm{VEGA}(\mathrm{LDP}, \mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: VEGA (i, j), contains the first-order Greek measuring the sensitivity of the option price $P_{i j}$ to change in the volatility of the underlying asset, i.e., $\frac{\partial P_{i j}}{\partial \sigma}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

15: THETA(LDP, N) - REAL (KIND=nag_wp) array
Output
On exit: THETA (i, j), contains the first-order Greek measuring the sensitivity of the option price $P_{i j}$ to change in time, i.e., $-\frac{\partial P_{i j}}{\partial T}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$, where $b=r-q$.

16: $\quad \mathrm{RHO}(\mathrm{LDP}, \mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: $\mathrm{RHO}(i, j)$, contains the first-order Greek measuring the sensitivity of the option price $P_{i j}$ to change in the annual risk-free interest rate, i.e., $-\frac{\partial P_{i j}}{\partial r}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

17: \quad CRHO (LDP, N) - REAL (KIND=nag_wp) array
Output
On exit: CRHO (i, j), contains the first-order Greek measuring the sensitivity of the option price $P_{i j}$ to change in the annual cost of carry rate, i.e., $-\frac{\partial P_{i j}}{\partial b}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$, where $b=r-q$.

18: $\quad \operatorname{VANNA}(L D P, N)-\operatorname{REAL}\left(K I N D=n a g _w p\right)$ array
Output
On exit: VANNA (i, j), contains the second-order Greek measuring the sensitivity of the first-order Greek $\Delta_{i j}$ to change in the volatility of the asset price, i.e., $-\frac{\partial \Delta_{i j}}{\partial T}=-\frac{\partial^{2} P_{i j}}{\partial S \partial \sigma}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

19: CHARM (LDP, N) - REAL (KIND=nag_wp) array
Output
On exit: CHARM (i, j), contains the second-order Greek measuring the sensitivity of the first-order Greek $\Delta_{i j}$ to change in the time, i.e., $-\frac{\partial \Delta_{i j}}{\partial T}=-\frac{\partial^{2} P_{i j}}{\partial S \partial T}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

20: $\quad \operatorname{SPEED}(\operatorname{LDP}, \mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
On exit: $\operatorname{SPEED}(i, j)$, contains the third-order Greek measuring the sensitivity of the second-order Greek $\Gamma_{i j}$ to change in the price of the underlying asset, i.e., $-\frac{\partial \Gamma_{i j}}{\partial S}=-\frac{\partial^{3} P_{i j}}{\partial S^{3}}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

21: $\operatorname{COLOUR}(\operatorname{LDP}, \mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: COLOUR (i, j), contains the third-order Greek measuring the sensitivity of the secondorder Greek $\Gamma_{i j}$ to change in the time, i.e., $-\frac{\partial \Gamma_{i j}}{\partial T}=-\frac{\partial^{3} P_{i j}}{\partial S \partial T}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

22: \quad ZOMMA $(L D P, N)-R E A L\left(K I N D=n a g _w p\right)$ array
Output
On exit: ZOMMA (i, j), contains the third-order Greek measuring the sensitivity of the secondorder Greek $\Gamma_{i j}$ to change in the volatility of the underlying asset, i.e., $-\frac{\partial \Gamma_{i j}}{\partial \sigma}=-\frac{\partial^{3} P_{i j}}{\partial S^{2} \partial \sigma}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

23: \quad VOMMA $(L D P, N)$ - REAL (KIND=nag_wp) array
Output
On exit: VOMMA (i, j), contains the second-order Greek measuring the sensitivity of the firstorder Greek $\Delta_{i j}$ to change in the volatility of the underlying asset, i.e., $-\frac{\partial \Delta_{i j}}{\partial \sigma}=-\frac{\partial^{2} P_{i j}}{\partial \sigma^{2}}$, for $i=1,2, \ldots, \mathrm{M}$ and $j=1,2, \ldots, \mathrm{~N}$.

24: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, CALPUT $=\langle$ value \rangle was an illegal value.
IFAIL $=2$
On entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 1$.
IFAIL $=3$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 1$.
IFAIL $=4$
On entry, $\mathrm{X}(\langle$ value $\rangle)=\langle$ value \rangle.
Constraint: $\mathrm{X}(i) \geq\langle$ value \rangle and $\mathrm{X}(i) \leq\langle$ value \rangle.
IFAIL $=5$
On entry, $\mathrm{S}=\langle$ value \rangle.
Constraint: $\mathrm{S} \geq\langle$ value \rangle and $\mathrm{S} \leq\langle$ value \rangle.

IFAIL $=6$
On entry, $\mathrm{T}(\langle$ value $\rangle)=\langle$ value \rangle.
Constraint: $\mathrm{T}(i) \geq\langle$ value \rangle.
IFAIL $=7$
On entry, SIGMA $=\langle$ value \rangle.
Constraint: SIGMA > 0.0.
IFAIL $=8$
On entry, $\mathrm{R}=\langle$ value \rangle.
Constraint: $\mathrm{R} \geq 0.0$.
IFAIL $=9$
On entry, $\mathrm{Q}=\langle$ value \rangle.
Constraint: $\mathrm{Q} \geq 0.0$.
IFAIL $=11$
On entry, LDP $=\langle$ value \rangle and $\mathrm{M}=\langle$ value \rangle.
Constraint: LDP $\geq \mathrm{M}$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.

IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An accuracy close to machine precision can generally be expected.

8 Parallelism and Performance

S30ABF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example computes the price of a European put with a time to expiry of 0.7 years, a stock price of 55 and a strike price of 60 . The risk-free interest rate is 10% per year and the volatility is 30% per year.

10.1 Program Text

```
Program s30abfe
    S30ABF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: nag_wp, s30abf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter : : nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: q, r, s, sigma
    Integer : : i, ifail, j, ldp, m, n
    Character (1) : calput
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable : : charm(:,:), colour(:,:), crho(:,:), \&
                                    delta(:,:), gamma(:,:), p(:,:), \&
                                    rho(:,:), speed(:,:), t(:), \&
                                    theta(:,:), vanna(:,:), vega(:,:), \&
                                    vomma(:,:), x(:), zomma(:,:)
    .. Executable Statements ..
    Write (nout,*) 'S30ABF Example Program Results'
    Skip heading in data file.
    Read (nin,*)
    Read (nin,*) calput
    Read (nin,*) s, sigma, r, \(q\)
    Read (nin,*) m, n
    ldp = m
    Allocate (charm(ldp,n), colour (ldp,n), crho(ldp,n), delta(ldp,n), \&
        gamma (ldp,n), \(p(l d p, n), r h o(l d p, n), \operatorname{speed}(l d p, n), t(n), t h e t a(l d p, n), ~ \& ~\)
        vanna(ldp,n), vega(ldp,n),vomma(ldp,n),x(m),zomma(ldp,n))
Read (nin,*) (x (i) , i=1,m)
Read (nin,*) (t(i), i=1,n)
ifail = 0
Call s30abf(calput,m,n,x,s,t,sigma,r,q,p,ldp,delta,gamma,vega,theta,rho, \&
    crho,vanna, charm,speed, colour, zomma, vomma,ifail)
Write (nout,*)
Select Case (calput)
Case ('C','c')
    Write (nout,*) 'European Call :'
Case ('P','p')
    Write (nout,*) 'European Put :'
End Select
Write (nout, 99997) ' Spot = ', s
Write (nout,99997) ' Volatility \(=\) ', sigma
Write (nout,99997) , Rate \(=\), r
Write (nout, 99997) ' Dividend \(=\) ', \(q\)
Write (nout,*)
Do \(j=1, n\)
    Write (nout,*)
```

```
Write (nout,99999) t(j)
Write (nout,*) ' Strike Price Delta Gamma Vega , // &
        'Theta Rho CRho'
Do i = 1,m
    Write (nout,99998) x(i), p(i,j), delta(i,j), gamma(i,j), vega(i,j), &
        theta(i,j), rho(i,j), crho(i,j)
End Do
Write (nout,*) ' Strike Price Vanna Charm Speed ' // &
    'Colour Zomma Vomma'
Do i = 1,m
    Write (nout,99998) x(i), p(i,j), vanna(i,j), charm(i,j), speed(i,j), &
        colour(i,j), zomma(i,j), vomma(i,j)
End Do
End Do
99999 Format (1X,'Time to Expiry : ',1X,F8.4)
99998 Format (1X,8(F8.4,1X))
99997 Format (A,1X,F8.4)
End Program s30abfe
```


10.2 Program Data

```
S3OABF Example Program Data
    'P' : Call = 'C', Put = 'P'
    55.0 0.3 0.1 0.0 : S, SIGMA, R, Q
    1 1 : M, N
60.0 : X(I), I = 1,2,...M
0.7 : T(I), I = 1,2,...N
```


10.3 Program Results

```
S30ABF Example Program Results
European Put :
    Spot = 55.0000
    Volatility = 0.3000
    Rate = 0.1000
    Dividend = 0.0000
Time to Expiry : 0.7000
    Strike Price Delta Gamma Vega Theta Rho CRho
    60.0000 6.0245 
    60.0000 6.0245 0.2566 -0.2137 -0.0006 0.0215 -0.0972 -0.6816
```

