NAG Library Routine Document
 G13DNF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G13DNF calculates the sample partial lag correlation matrices of a multivariate time series. A set of χ^{2}-statistics and their significance levels are also returned. A call to G13DMF is usually made prior to calling this routine in order to calculate the sample cross-correlation matrices.

2 Specification

```
SUBROUTINE GI3DNF (K, N, M, KMAX, RO, R, MAXLAG, PARLAG, X, PVALUE,
        WORK, LWORK, IFAIL)
INTEGER K, N, M, KMAX, MAXLAG, LWORK, IFAIL
REAL (KIND=nag_wp) RO(KMAX,K), R(KMAX,KMAX,M), PARLAG(KMAX ,KMAX ,M),
    X(M), PVALUE (M), WORK(LWORK)
```


3 Description

Let $W_{t}=\left(w_{1 t}, w_{2 t}, \ldots, w_{k t}\right)^{\mathrm{T}}$, for $t=1,2, \ldots, n$, denote n observations of a vector of k time series. The partial lag correlation matrix at lag $l, P(l)$, is defined to be the correlation matrix between W_{t} and W_{t+l}, after removing the linear dependence on each of the intervening vectors $W_{t+1}, W_{t+2}, \ldots, W_{t+l-1}$. It is the correlation matrix between the residual vectors resulting from the regression of W_{t+l} on the carriers $W_{t+l-1}, \ldots, W_{t+1}$ and the regression of W_{t} on the same set of carriers; see Heyse and Wei (1985).
$P(l)$ has the following properties.
(i) If W_{t} follows a vector autoregressive model of order p, then $P(l)=0$ for $l>p$;
(ii) When $k=1, P(l)$ reduces to the univariate partial autocorrelation at lag l;
(iii) Each element of $P(l)$ is a properly normalized correlation coefficient;
(iv) When $l=1, P(l)$ is equal to the cross-correlation matrix at lag 1 (a natural property which also holds for the univariate partial autocorrelation function).
Sample estimates of the partial lag correlation matrices may be obtained using the recursive algorithm described in Wei (1990). They are calculated up to lag m, which is usually taken to be at most $n / 4$. Only the sample cross-correlation matrices $(\hat{R}(l)$, for $l=0,1, \ldots, m)$ and the standard deviations of the series are required as input to G13DNF. These may be computed by G13DMF. Under the hypothesis that W_{t} follows an autoregressive model of order $s-1$, the elements of the sample partial lag matrix $\hat{P}(s)$, denoted by $\hat{P}_{i j}(s)$, are asymptotically Normally distributed with mean zero and variance $1 / n$. In addition the statistic

$$
X(s)=n \sum_{i=1}^{k} \sum_{j=1}^{k} \hat{P}_{i j}(s)^{2}
$$

has an asymptotic χ^{2}-distribution with k^{2} degrees of freedom. These quantities, $X(l)$, are useful as a diagnostic aid for determining whether the series follows an autoregressive model and, if so, of what order.

4 References

Heyse J F and Wei W W S (1985) The partial lag autocorrelation function Technical Report No. 32 Department of Statistics, Temple University, Philadelphia

Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison-Wesley

5 Parameters

1: K - INTEGER
On entry: k, the dimension of the multivariate time series.
Constraint: $\mathrm{K} \geq 1$.
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of observations in each series.
Constraint: $\mathrm{N} \geq 2$.
3: M - INTEGER
Input
On entry: m, the number of partial lag correlation matrices to be computed. Note this also specifies the number of sample cross-correlation matrices that must be contained in the array R.
Constraint: $1 \leq \mathrm{M}<\mathrm{N}$.
4: KMAX - INTEGER
Input
On entry: the first dimension of the arrays R0, R and PARLAG and the second dimension of the arrays R and PARLAG as declared in the (sub)program from which G13DNF is called.
Constraint: $\mathrm{KMAX} \geq \mathrm{K}$.
5: \quad R0(KMAX, K$)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if $i \neq j$, then $\mathrm{R} 0(i, j)$ must contain the (i, j) th element of the sample cross-correlation matrix at lag zero, $\hat{R}_{i j}(0)$. If $i=j$, then $\mathrm{R} 0(i, i)$ must contain the standard deviation of the i th series.

6: $\quad \mathrm{R}(\mathrm{KMAX}, \mathrm{KMAX}, \mathrm{M})$ - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{R}(i, j, l)$ must contain the (i, j) th element of the sample cross-correlation at lag $l, \hat{R}_{i j}(l)$, for $l=1,2, \ldots, m, i=1,2, \ldots, k$ and $j=1,2, \ldots, k$, where series j leads series i (see Section 9).

7: MAXLAG - INTEGER
Output
On exit: the maximum lag up to which partial lag correlation matrices (along with χ^{2}-statistics and their significance levels) have been successfully computed. On a successful exit MAXLAG will equal M. If IFAIL $=2$ on exit, then MAXLAG will be less than M.

8: \quad PARLAG(KMAX, $\mathrm{KMAX}, \mathrm{M})$ - REAL (KIND=nag_wp) array
Output
On exit: PARLAG (i, j, l) contains the (i, j) th element of the sample partial lag correlation matrix at lag $l, \hat{P}_{i j}(l)$, for $l=1,2, \ldots$, MAXLAG, $i=1,2, \ldots, k$ and $j=1,2, \ldots, k$.
$\mathrm{X}(\mathrm{M})-$ REAL (KIND=$=$ nag_wp) array
Output
On exit: $\mathrm{X}(l)$ contains the χ^{2}-statistic at lag l, for $l=1,2, \ldots$, MAXLAG.

10: $\quad \operatorname{PVALUE}(\mathrm{M})-$ REAL (KIND=nag_wp) array
Output
On exit: PVALUE (l) contains the significance level of the corresponding χ^{2}-statistic in X , for $l=1,2, \ldots$, MAXLAG.

11: WORK(LWORK) - REAL (KIND=nag_wp) array Workspace
12: LWORK - INTEGER Input
On entry: the dimension of the array WORK as declared in the (sub)program from which G13DNF is called.

Constraint: LWORK $\geq(5 \mathrm{M}+6) \mathrm{K}^{2}+\mathrm{K}$.
13: IFAIL - INTEGER Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{K}<1$,
or $\quad \mathrm{N}<2$,
or $\quad M<1$,
or $\quad \mathrm{M} \geq \mathrm{N}$,
or $\quad \mathrm{KMAX}<\mathrm{K}$,
or \quad LWORK $<(5 \mathrm{M}+6) \mathrm{K}^{2}+\mathrm{K}$.
IFAIL $=2$
The recursive equations used to compute the sample partial lag correlation matrices have broken down at lag MAXLAG +1 . All output quantities in the arrays PARLAG, X and PVALUE up to and including lag MAXLAG will be correct.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy will depend upon the accuracy of the sample cross-correlations.

8 Parallelism and Performance

G13DNF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

G13DNF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken is roughly proportional to $m^{2} k^{3}$.
If you have calculated the sample cross-correlation matrices in the arrays R 0 and R , without calling G13DMF, then care must be taken to ensure they are supplied as described in Section 5. In particular, for $l \geq 1, \hat{R}_{i j}(l)$ must contain the sample cross-correlation coefficient between $w_{i(t-l)}$ and $w_{j t}$.

The routine G13DBF computes squared partial autocorrelations for a specified number of lags. It may also be used to estimate a sequence of partial autoregression matrices at lags $1,2, \ldots$ by making repeated calls to the routine with the parameter NK set to $1,2, \ldots$ The (i, j) th element of the sample partial autoregression matrix at lag l is given by $W(i, j, l)$ when NK is set equal to l on entry to G13DBF. Note that this is the 'Yule-Walker' estimate. Unlike the partial lag correlation matrices computed by G13DNF, when W_{t} follows an autoregressive model of order $s-1$, the elements of the sample partial autoregressive matrix at lag s do not have variance $1 / n$, making it very difficult to spot a possible cutoff point. The differences between these matrices are discussed further by Wei (1990).
Note that G13DBF takes the sample cross-covariance matrices as input whereas this routine requires the sample cross-correlation matrices to be input.

10 Example

This example computes the sample partial lag correlation matrices of two time series of length 48 , up to lag 10. The matrices, their χ^{2}-statistics and significance levels and a plot of symbols indicating which elements of the sample partial lag correlation matrices are significant are printed. Three $*$ represent significance at the 0.5% level, two * represent significance at the 1% level and a single * represents significance at the 5% level. The * are plotted above or below the central line depending on whether the elements are significant in a positive or negative direction.

10.1 Program Text

```
G13DNF Example Program Text
Mark 25 Release. NAG Copyright 2014.
    Module g13dnfe_mod
    G13DNF Example Program Module:
                Parameters and User-defined Routines
```

! .. Use Statements ..
Use nag_library, Only: nag_wp
.. Implicit None Statement ..
Implicit None
.. Accessibility Statements ..
Private
Public :: zprint
!
Parameters .
Integer, Parameter, Public : nin $=5$, nout $=6$
Contains
Subroutine zprint(k,n,m,ldpar,parlag,x,pvalue, nout)
! .. Use Statements ..
Use nag_library, Only: x04cbf
.. Scalar Arguments ..
Integer, Intent (In) : k, ldpar, m, n, nout
.. Array Arguments ..
Real (Kind=nag_wp), Intent (In)
:: parlag(ldpar,ldpar,m),
pvalue(m), x(m)
.. Local Scalars ..
Real (Kind=nag_wp)
: : c1, c2, c3, c5, c6, c7,
\&

Integer
inv_sqrt_n, sum
.. Local Arrays ..
Character (1) : : clabs(1), rlabs(1)
Character (79) : : rec (7)
! .. Intrinsic Procedures ..
Intrinsic
: : real, sqrt
.. Executable Statements ..
Print the partial lag correlation matrices.

```
inv_sqrt_n = 1.0EO_nag_wp/sqrt(real(n,kind=nag_wp))
Write (nout,*)
Write (nout,*) ' PARTIAL LAG CORRELATION MATRICES'
Write (nout,*)
Do l = 1,m
    Write (nout,99999) ' Lag = ', 1
    Flush (nout)
    ifail = 0
    Call x04cbf('G','N',k,k,parlag(1,1,l),ldpar,'F9.3',' ','N',rlabs, &
        'N',clabs,80,5,ifail)
End Do
Write (nout,99998) ' Standard error = 1 / SQRT(N) =', inv_sqrt_n
Print indicator symbols to indicate significant elements.
Write (nout,*)
Write (nout,*) ' TABLES OF INDICATOR SYMBOLS'
Write (nout,*) ' ---------------------------'
Write (nout,99999) ' For Lags 1 to ', m
! Set up annotation for the plots.
Write (rec(1),99997) ', 0.005 :',
Write (rec(2),99997) ', + 0.01 :',
Write (rec(3),99997) ', 0.05 :'
Write (rec(4)(1:23),99997) ' Sig. Level :'
Write (rec(4)(24:),99997) '_ _ - _ _ _ _ - - - Lags'
Write (rec(5),99997) ', 0.05 :',
Write (rec(7),99997) ' 0.005 :'
```

Set up the critical values
c1 = 3.29E0_nag_wp*inv_sqrt_n
c2 $=2.58 E 0 _$nag_wp*inv_sqrt_n
c3 $=1.96 E 0$ _nag_wp*inv__sqrt_n
c5 $=-\mathrm{c} 3$
$\mathrm{c} 6=-\mathrm{c} 2$
$\mathrm{c} 7=-\mathrm{c} 1$
Do i $=1, k$
Do $j=1, k$
Write (nout,*)

```
    If (i==j) Then
            Write (nout,99996) ' Auto-correlation function for', ' series ', &
            i
        Else
            Write (nout,99995) ' Cross-correlation function for', &
                ' series ', i, ' and series', j
            End If
            Do l = 1, m
        ll = 23 + 2*l
        sum = parlag(i,j,l)
            Clear the last plot with blanks
            Do i2 = 1, 7
                If (i2/=4) Then
                    rec(i2)(11:ll)=, '
            End If
        End Do
            Check for significance
            If (sum>c1) Then
            rec(1)(ll:ll)= '*'
            End If
            If (sum>c2) Then
            rec(2)(ll:ll)='*'
            End If
            If (sum>c3) Then
                rec(3)(ll:ll)= '*'
            End If
            If (sum<c5) Then
            rec(5)(ll:ll)='*'
            End If
            If (sum<c6) Then
                rec(6)(11:ll)= '*'
            End If
            If (sum<c7) Then
                rec(7)(1l:ll)='*'
            End If
            End Do
            Print
            Write (nout,99997)(rec(i2),i2=1,7)
        End Do
    End Do
    Print the chi-square statistics and p-values.
    Write (nout,*)
    Write (nout,*)
    Write (nout,*) ' Lag Chi-square statistic P-value'
    Write (nout,*) ' ---
Write (nout,*)
Write (nout,99994)(1,x(l),pvalue(1),l=1,m)
Return
99999 Format (/1X,A,I2)
99998 Format (/1X,A,F6.3,A)
99997 Format (1X,A)
99996 Format (//1X,A,A,I2/)
99995 Format (//IX,A,A,I2,A,I2/)
99994 Format (1X,I4,10X,F8.3,11X,F8.4)
    End Subroutine zprint
    End Module g13dnfe_mod
    Program gl3dnfe
! G13DNF Example Main Program
! .. Use Statements ..
    Use nag_library, Only: g13dmf, g13dnf, nag_wp
    Use gl3dnfe_mod, Only: nin, nout, zprint
! .. Implicit None Statement ..
    Implicit None
```

```
! .. Local Scalars ..
    Integer :: i, ifail, k, kmax, lwork, m,
    Character (1)
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: parlag(:,:,:), pvalue(:),
    r(:,:,:), rO(:,:), w(:,:), &
    wmean(:), work(:), x(:)
    .. Executable Statements ..
    Write (nout,*) 'G13DNF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
    Read in the problem size
    Read (nin,*) k, n, m, matrix
    kmax = k
    lwork = (5*m+6)*k**2 + k
    Allocate (w(kmax,n),wmean(k),rO(kmax,k),r(kmax,kmax,m), &
        parlag(kmax,kmax,m),x(m),pvalue(m),work(lwork))
    Read in series
    Read (nin,*)(w(i,1:n),i=1,k)
    Calculate cross correlations
    ifail = 0
    Call g13dmf(matrix,k,n,m,w,kmax,wmean,r0,r,ifail)
! Calculate sample partial lag correlation matrices
    ifail = 0
    Call g13dnf(k,n,m,kmax,r0,r,maxlag,parlag,x,pvalue,work,lwork,ifail)
    Display results
    Call zprint(k,n,m,kmax,parlag,x,pvalue,nout)
```

 End Program g13dnfe

10.2 Program Data

10.3 Program Results

G13DNF Example Program Results

PARTIAL LAG CORRELATION MATRICES

Lag $=1$

0.736	0.174
0.211	0.555

Lag $=2$

$$
-0.187 \quad-0.083
$$

```
    -0.180 -0.072
Lag = 3
            0.278 -0.007
    0.084 -0.213
Lag = 4
    -0.084 0.227
    0.128 -0.176
Lag = 5
            0.236 0.238
            -0.047 -0.046
Lag = 6
            -0.016 0.087
            0.100 -0.081
Lag = 7
            -0.036 0.261
            0.126 0.012
Lag = 8
            0.077 rry 0.381
Lag = 9
            -0.065 -0.387
Lag = 10
            -0.026 - -0.286
Standard error = 1 / SQRT(N) = 0.144
TABLES OF INDICATOR SYMBOLS
For Lags 1 to 10
Auto-correlation function for series 1
            # 0.005 : *
        Sig. Level : - - - - - - - - - - Lags
            - 0.01 :
                        0.005 :
Cross-correlation function for series 1 and series 2
```



```
Cross-correlation function for series 2 and series 1
    0.005 :
```

	0.05	$:$
Sig. Level		
	0.05	$:$
	0.01	$:$
	0.005	$:$

Lag	Chi-square statistic	P-value
--	------------	
1	44.362	0.0000
2	3.824	0.4304
3	6.219	0.1834
4	5.094	0.2778
5	5.609	0.2303
6	1.170	0.8830
7	4.098	0.3929
8	8.371	0.0789
9	9.244	0.0553
10	5.435	0.2455

