NAG Library Routine Document
 G03DCF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G03DCF allocates observations to groups according to selected rules. It is intended for use after G03DAF.

2 Specification

```
SUBROUTINE GO3DCF (TYP, EQUAL, PRIORS, NVAR, NG, NIG, GMN, LDGMN, GC,
    DET, NOBS, M, ISX, X, LDX, PRIOR, P, LDP, IAG, ATIQ,
    ATI, WK, IFAIL)
INTEGER NVAR, NG, NIG(NG), LDGMN, NOBS,M, ISX(M), LDX, LDP, &
    IAG(NOBS), IFAIL
REAL (KIND=nag_wp) GMN(LDGMN,NVAR), GC((NG+1)*NVAR*(NVAR+1)/2),
    DET(NG), X(LDX,M), PRIOR(NG), P(LDP,NG), &
    ATI (LDP,*), WK(2*NVAR)
    ATIQ
    TYP, EQUAL, PRIORS
```


3 Description

Discriminant analysis is concerned with the allocation of observations to groups using information from other observations whose group membership is known, X_{t}; these are called the training set. Consider p variables observed on n_{g} populations or groups. Let \bar{x}_{j} be the sample mean and S_{j} the within-group variance-covariance matrix for the j th group; these are calculated from a training set of n observations with n_{j} observations in the j th group, and let x_{k} be the k th observation from the set of observations to be allocated to the n_{g} groups. The observation can be allocated to a group according to a selected rule. The allocation rule or discriminant function will be based on the distance of the observation from an estimate of the location of the groups, usually the group means. A measure of the distance of the observation from the j th group mean is given by the Mahalanobis distance, $D_{k j}$:

$$
\begin{equation*}
D_{k j}^{2}=\left(x_{k}-\bar{x}_{j}\right)^{\mathrm{T}} S_{j}^{-1}\left(x_{k}-\bar{x}_{j}\right) \tag{1}
\end{equation*}
$$

If the pooled estimate of the variance-covariance matrix S is used rather than the within-group variancecovariance matrices, then the distance is:

$$
\begin{equation*}
D_{k j}^{2}=\left(x_{k}-\bar{x}_{j}\right)^{\mathrm{T}} S^{-1}\left(x_{k}-\bar{x}_{j}\right) \tag{2}
\end{equation*}
$$

Instead of using the variance-covariance matrices S and S_{j}, G03DCF uses the upper triangular matrices R and R_{j} supplied by G03DAF such that $S=R^{\mathrm{T}} R$ and $S_{j}=R_{j}^{\mathrm{T}} R_{j} . D_{k j}^{2}$ can then be calculated as $z^{\mathrm{T}} z$ where $R^{\mathrm{T}}{ }_{j} z=\left(x_{k}-x_{j}\right)$ or $R^{\mathrm{T}} z=\left(x_{k}-x\right)$ as appropriate.
In addition to the distances, a set of prior probabilities of group membership, π_{j}, for $j=1,2, \ldots, n_{g}$, may be used, with $\sum \pi_{j}=1$. The prior probabilities reflect your view as to the likelihood of the observations coming from the different groups. Two common cases for prior probabilities are $\pi_{1}=\pi_{2}=\cdots=\pi_{n_{g}}$, that is, equal prior probabilities, and $\pi_{j}=n_{j} / n$, for $j=1,2, \ldots, n_{g}$, that is, prior probabilities proportional to the number of observations in the groups in the training set.
G03DCF uses one of four allocation rules. In all four rules the p variables are assumed to follow a multivariate Normal distribution with mean μ_{j} and variance-covariance matrix Σ_{j} if the observation comes from the j th group. The different rules depend on whether or not the within-group variancecovariance matrices are assumed equal, i.e., $\Sigma_{1}=\Sigma_{2}=\cdots=\Sigma_{n_{g}}$, and whether a predictive or estimative approach is used. If $p\left(x_{k} \mid \mu_{j}, \Sigma_{j}\right)$ is the probability of observing the observation x_{k} from
group j, then the posterior probability of belonging to group j is:

$$
\begin{equation*}
p\left(j \mid x_{k}, \mu_{j}, \Sigma_{j}\right) \propto p\left(x_{k} \mid \mu_{j}, \Sigma_{j}\right) \pi_{j} . \tag{3}
\end{equation*}
$$

In the estimative approach, the parameters μ_{j} and Σ_{j} in (3) are replaced by their estimates calculated from X_{t}. In the predictive approach, a non-informative prior distribution is used for the parameters and a posterior distribution for the parameters, $p\left(\mu_{j}, \Sigma_{j} \mid X_{t}\right)$, is found. A predictive distribution is then obtained by integrating $p\left(j \mid x_{k}, \mu_{j}, \Sigma_{j}\right) p\left(\mu_{j}, \Sigma_{j} \mid X\right)$ over the parameter space. This predictive distribution then replaces $p\left(x_{k} \mid \mu_{j}, \Sigma_{j}\right)$ in (3). See Aitchison and Dunsmore (1975), Aitchison et al. (1977) and Moran and Murphy (1979) for further details.

The observation is allocated to the group with the highest posterior probability. Denoting the posterior probabilities, $p\left(j \mid x_{k}, \mu_{j}, \Sigma_{j}\right)$, by q_{j}, the four allocation rules are:
(i) Estimative with equal variance-covariance matrices - Linear Discrimination

$$
\log q_{j} \propto-\frac{1}{2} D_{k j}^{2}+\log \pi_{j}
$$

(ii) Estimative with unequal variance-covariance matrices - Quadratic Discrimination

$$
\log q_{j} \propto-\frac{1}{2} D_{k j}^{2}+\log \pi_{j}-\frac{1}{2} \log \left|S_{j}\right|
$$

(iii) Predictive with equal variance-covariance matrices

$$
q_{j}^{-1} \propto\left(\left(n_{j}+1\right) / n_{j}\right)^{p / 2}\left\{1+\left[n_{j} /\left(\left(n-n_{g}\right)\left(n_{j}+1\right)\right)\right] D_{k j}^{2}\right\}^{\left(n+1-n_{g}\right) / 2}
$$

(iv) Predictive with unequal variance-covariance matrices

$$
q_{j}^{-1} \propto C\left\{\left(\left(n_{j}^{2}-1\right) / n_{j}\right)\left|S_{j}\right|\right\}^{p / 2}\left\{1+\left(n_{j} /\left(n_{j}^{2}-1\right)\right) D_{k j}^{2}\right\}^{n_{j} / 2}
$$

where

$$
C=\frac{\Gamma\left(\frac{1}{2}\left(n_{j}-p\right)\right)}{\Gamma\left(\frac{1}{2} n_{j}\right)}
$$

In the above the appropriate value of $D_{k j}^{2}$ from (1) or (2) is used. The values of the q_{j} are standardized so that,

$$
\sum_{j=1}^{n_{g}} q_{j}=1
$$

Moran and Murphy (1979) show the similarity between the predictive methods and methods based upon likelihood ratio tests.
In addition to allocating the observation to a group, G03DCF computes an atypicality index, $I_{j}\left(x_{k}\right)$. The predictive atypicality index is returned, irrespective of the value of the parameter TYP. This represents the probability of obtaining an observation more typical of group j than the observed x_{k} (see Aitchison and Dunsmore (1975) and Aitchison et al. (1977)). The atypicality index is computed for unequal within-group variance-covariance matrices as:

$$
I_{j}\left(x_{k}\right)=P\left(B \leq z: \frac{1}{2} p, \frac{1}{2}\left(n_{j}-p\right)\right)
$$

where $P(B \leq \beta: a, b)$ is the lower tail probability from a beta distribution and

$$
z=D_{k j}^{2} /\left(D_{k j}^{2}+\left(n_{j}^{2}-1\right) / n_{j}\right)
$$

and for equal within-group variance-covariance matrices as:

$$
I_{j}\left(x_{k}\right)=P\left(B \leq z: \frac{1}{2} p, \frac{1}{2}\left(n-n_{g}-p+1\right)\right)
$$

with

$$
z=D_{k j}^{2} /\left(D_{k j}^{2}+\left(n-n_{g}\right)\left(n_{j}+1\right) / n_{j}\right)
$$

If $I_{j}\left(x_{k}\right)$ is close to 1 for all groups it indicates that the observation may come from a grouping not represented in the training set. Moran and Murphy (1979) provide a frequentist interpretation of $I_{j}\left(x_{k}\right)$.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge
Aitchison J, Habbema J D F and Kay J W (1977) A critical comparison of two methods of statistical discrimination Appl. Statist. 26 15-25

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Moran M A and Murphy B J (1979) A closer look at two alternative methods of statistical discrimination Appl. Statist. 28 223-232

Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill

5 Parameters

1: TYP - CHARACTER(1)
On entry: whether the estimative or predictive approach is used.
$\mathrm{TYP}={ }^{\prime} \mathrm{E}^{\prime}$
The estimative approach is used.
TYP = 'P'
The predictive approach is used.
Constraint: TYP = 'E' or ' P '.
2: EQUAL - CHARACTER(1)
Input
On entry: indicates whether or not the within-group variance-covariance matrices are assumed to be equal and the pooled variance-covariance matrix used.
EQUAL = 'E'
The within-group variance-covariance matrices are assumed equal and the matrix R stored in the first $p(p+1) / 2$ elements of GC is used.

EQUAL = 'U'
The within-group variance-covariance matrices are assumed to be unequal and the matrices R_{i}, for $i=1,2, \ldots, n_{g}$, stored in the remainder of GC are used.
Constraint: EQUAL = 'E' or 'U'.

3: PRIORS - CHARACTER(1)
Input
On entry: indicates the form of the prior probabilities to be used.
PRIORS = 'E'
Equal prior probabilities are used.
PRIORS = 'P'
Prior probabilities proportional to the group sizes in the training set, n_{j}, are used.
PRIORS = 'I'
The prior probabilities are input in PRIOR.
Constraint: PRIORS $=$ ' E ', 'I' or 'P'.

4: NVAR - INTEGER
Input
On entry: p, the number of variables in the variance-covariance matrices.
Constraint: NVAR ≥ 1.

5: \quad NG - INTEGER
Input
On entry: the number of groups, n_{g}.
Constraint: $\mathrm{NG} \geq 2$.
6: $\operatorname{NIG(NG)~-~INTEGER~array~}$
Input
On entry: the number of observations in each group in the training set, n_{j}.

Constraints:

if $\mathrm{EQUAL}=$ ' E ', $\mathrm{NIG}(j)>0$ and $\sum_{j=1}^{n_{g}} \mathrm{NIG}(j)>\mathrm{NG}+\mathrm{NVAR}$, for $j=1,2, \ldots, n_{g}$;
if $\mathrm{EQUAL}=$ ' U ', $\operatorname{NIG}(j)>\operatorname{NVAR}$, for $j=1,2, \ldots, n_{g}$.
7: \quad GMN(LDGMN, NVAR) - REAL (KIND=nag_wp) array
Input
On entry: the j th row of GMN contains the means of the p variables for the j th group, for $j=1,2, \ldots, n_{j}$. These are returned by G03DAF.

8: LDGMN - INTEGER
Input
On entry: the first dimension of the array GMN as declared in the (sub)program from which G03DCF is called.
Constraint: LDGMN $\geq \mathrm{NG}$.
9: $\quad \mathrm{GC}((\mathrm{NG}+1) \times \mathrm{NVAR} \times(\mathrm{NVAR}+1) / 2)-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: the first $p(p+1) / 2$ elements of GC should contain the upper triangular matrix R and the next n_{g} blocks of $p(p+1) / 2$ elements should contain the upper triangular matrices R_{j}.
All matrices must be stored packed by column. These matrices are returned by G03DAF. If EQUAL $=$ ' E ' only the first $p(p+1) / 2$ elements are referenced, if EQUAL $=$ ' U ' only the elements $p(p+1) / 2+1$ to $\left(n_{g}+1\right) p(p+1) / 2$ are referenced.

Constraints:

if EQUAL $=$ ' E ', the diagonal elements of R must be $\neq 0.0$;
if EQUAL $=$ ' U ', the diagonal elements of the R_{j} must be $\neq 0.0$, for $j=1,2, \ldots, n_{g}$.
DET(NG) - REAL (KIND=nag_wp) array
Input
On entry: if EQUAL $=$ ' U '. the logarithms of the determinants of the within-group variancecovariance matrices as returned by G03DAF. Otherwise DET is not referenced.

11: NOBS - INTEGER
Input
On entry: the number of observations in X which are to be allocated.
Constraint: NOBS ≥ 1.
12: M - INTEGER
Input
On entry: the number of variables in the data array X .
Constraint: $\mathrm{M} \geq$ NVAR.
13: $\operatorname{ISX}(\mathrm{M})$ - INTEGER array
Input
On entry: $\operatorname{ISX}(l)$ indicates if the l th variable in X is to be included in the distance calculations. If $\operatorname{ISX}(l)>0$, the l th variable is included, for $l=1,2, \ldots, \mathrm{M}$; otherwise the l th variable is not referenced.
Constraint: $\operatorname{ISX}(l)>0$ for NVAR values of l.

14: $\mathrm{X}(\mathrm{LDX}, \mathrm{M})$ - REAL (KIND=nag_wp) array
Input
On entry: $\mathrm{X}(k, l)$ must contain the k th observation for the l th variable, for $k=1,2, \ldots$, NOBS and $l=1,2, \ldots, \mathrm{M}$.

15: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G03DCF is called.

Constraint: LDX \geq NOBS.
16: \quad PRIOR(NG) - REAL (KIND=nag_wp) array
Input/Output
On entry: if PRIORS $=$ ' I ', the prior probabilities for the n_{g} groups.
Constraint: if PRIORS $=$ 'I', $\operatorname{PRIOR}(j)>0.0$ and $\left|1-\sum_{j=1}^{n_{g}} \operatorname{PRIOR}(j)\right| \leq 10 \times$ machine precision, for $j=1,2, \ldots, n_{g}$.

On exit: if PRIORS $=$ ' P ', the computed prior probabilities in proportion to group sizes for the n_{g} groups.
If PRIORS $=$ 'I', the input prior probabilities will be unchanged.
If PRIORS $=$ ' E ', PRIOR is not set.
17: $\quad \mathrm{P}(\mathrm{LDP}, \mathrm{NG})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: $\mathrm{P}(k, j)$ contains the posterior probability $p_{k j}$ for allocating the k th observation to the j th group, for $k=1,2, \ldots$, NOBS and $j=1,2, \ldots, n_{g}$.

18: LDP - INTEGER
Input
On entry: the first dimension of the arrays P and ATI as declared in the (sub)program from which G03DCF is called.

Constraint: LDP \geq NOBS.
19: IAG(NOBS) - INTEGER array
Output
On exit: the groups to which the observations have been allocated.
20: ATIQ - LOGICAL
Input
On entry: ATIQ must be .TRUE. if atypicality indices are required. If ATIQ is .FALSE. the array ATI is not set.

21: $\quad \operatorname{ATI}(\mathrm{LDP}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
Note: the second dimension of the array ATI must be at least NG if ATIQ = .TRUE., and at least 1 otherwise.
On exit: if ATIQ is .TRUE., $\operatorname{ATI}(k, j)$ will contain the predictive atypicality index for the k th observation with respect to the j th group, for $k=1,2, \ldots$, NOBS and $j=1,2, \ldots, n_{g}$.
If ATIQ is .FALSE., ATI is not set.

22: $\mathrm{WK}(2 \times \mathrm{NVAR})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace

23: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, NVAR <1,
or $\quad \mathrm{NG}<2$,
or \quad NOBS <1,
or $\quad M<N V A R$,
or \quad LDGMN $<N G$,
or \quad LDX $<$ NOBS,
or \quad LDP $<$ NOBS,
or \quad TYP \neq ' E ' or ' P ',
or \quad EQUAL \neq ' E ' or ' U ',
or \quad PRIORS \neq 'E', 'I' or 'P'.
IFAIL $=2$
On entry, the number of variables indicated by ISX is not equal to NVAR,
or $\operatorname{EQUAL}=$ ' E ' and $\operatorname{NIG}(j) \leq 0$, for some j,
or $\quad \mathrm{EQUAL}={ }^{\prime} \mathrm{E}^{\prime}$ and $\sum_{j=1}^{n_{g}} \mathrm{NIG}(j) \leq \mathrm{NG}+$ NVAR,
or $\quad \mathrm{EQUAL}=$ ' U ' and $\operatorname{NIG}(j) \leq$ NVAR for some j.
IFAIL $=3$
On entry, $\operatorname{PRIORS}=$ 'I' and $\operatorname{PRIOR}(j) \leq 0.0$ for some j,
or $\quad \operatorname{PRIORS}=$ 'I' and $\sum_{j=1}^{n_{g}} \operatorname{PRIOR}(j)$ is not within $10 \times$ machine precision of 1.

IFAIL $=4$
On entry, EQUAL = ' E ' and a diagonal element of R is zero,
or $\quad \mathrm{EQUAL}=$ ' U ' and a diagonal element of R_{j} for some j is zero.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or R_{j} matrices. The atypicality index should be accurate to four significant places.

8 Parallelism and Performance

G03DCF is not threaded by NAG in any implementation.
G03DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The distances $D_{k j}^{2}$ can be computed using G03DBF if other forms of discrimination are required.

10 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three 'types' of Cushing's syndrome. The variables are the logarithms of the urinary excretion rates ($\mathrm{mg} / 24 \mathrm{hr}$) of two steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices are computed by G03DAF. A further six observations of unknown type are input and allocations made using the predictive approach and under the assumption that the within-group covariance matrices are not equal. The posterior probabilities of group membership, q_{j}, and the atypicality index are printed along with the allocated group. The atypicality index shows that observations 5 and 6 do not seem to be typical of the three types present in the initial 21 observations.

10.1 Program Text

```
    Program g03dcfe
    GO3DCF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: g03daf, g03dcf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: df, sig, stat
    Integer :: i,' ifail, ldgmn, ldox, ldp, ldx, &
    lgc, lwk, lwt, m, n, ng, nobs, nvar, &
    tdati
    Logical :: atiq
    Character (1) :: equal, priors, typ, weight
    Character (80) :: fmt
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: ati(:,:), det(:), gc(:), gmn(:,:), &
    ox(:,:), p(:,:), prior(:), wk(:), &
```

```
                                    wt(:), x(:,:)
    Integer, Allocatable :: iag(:), ing(:), isx(:), iwk(:), nig(:)
.. Intrinsic Procedures ..
Intrinsic :: count, max
.. Executable Statements ..
Write (nout,*) 'GO3DCF Example Program Results'
Write (nout,*)
! Skip headings in data file
Read (nin,*)
Read in the problem size
Read (nin,*) n, m, ng, weight
If (weight=='W' .Or. weight=='w') Then
    lwt = n
Else
    lwt = 0
End If
ldox = n
Allocate (ox(ldox,m),ing(n),wt(lwt),isx(m))
! Read in data
If (lwt>0) Then
    Read (nin,*)(ox(i,1:m),ing(i),wt(i),i=1,n)
Else
    Read (nin,*)(ox(i,1:m),ing(i),i=1,n)
End If
Read in variable inclusion flags
Read (nin,*) isx(1:m)
Calculate NVAR
nvar = count(isx(1:m)==1)
lwk = max(n*(nvar+1),2*nvar)
ldgmn = ng
lgc = (ng+1)*nvar*(nvar+1)/2
Allocate (nig(ng),gmn(ldgmn,nvar),det(ng),gc(lgc),wk(lwk),iwk(ng))
Compute covariance matrix
ifail = 0
Call g03daf(weight,n,m,ox,ldox,isx,nvar,ing,ng,wt,nig,gmn,ldgmn,det,gc, &
    stat,df,sig,wk,iwk,ifail)
! Read in parameters controlling grouping
    Read (nin,*) typ, equal, priors, nobs, atiq
    If (atiq) Then
        tdati = ng
Else
        tdati = 1
    End If
    ldx = nobs
    ldp = nobs
    Allocate (x(ldx,m),prior(ng),p(ldp,ng),iag(nobs),ati(ldp,tdati))
! Read in data to group
    Read (nin,*)(x(i,1:m),i=1,nobs)
    Read in priors
    If (priors=='I' .Or. priors=='i') Then
        Read (nin,*) prior(1:ng)
    End If
! Allocate observations to groups
    ifail = 0
    Call g03dcf(typ,equal,priors,nvar,ng,nig,gmn,ldgmn,gc,det,nobs,m,isx,x, &
        ldx,prior,p,ldp,iag,atiq,ati,wk,ifail)
Display results
```

```
If (atiq) Then
    Write (fmt,99999) '(2(I6,5X,', ng, 'F6.3))'
    Write (nout,*) ' Obs Posterior Allocated', &
                Atypicality'
    Write (nout,*) ' probabilities to group index'
    Write (nout,*)
    Write (nout,fmt)(i,p(i,1:ng),iag(i),ati(i,1:ng),i=1,nobs)
Else
    Write (fmt,99999) '(I6,5X,', ng, 'F6.3,I6))'
    Write (nout,*) ' Obs Posterior Allocated'
    Write (nout,*) ' probabilities to group '
    Write (nout,*)
    Write (nout,fmt)(i,p(i,1:ng),iag(i),i=1,nobs)
End If
99999 Format (A,IO,A)
End Program g03dcfe
```


10.2 Program Data

GO3DCF Example Program Data			
2123 '	' U'		N, M, NG, WEIGHT
1.1314	2.4596	1	
1.0986	0.2624	1	
0.6419	-2.3026	1	
1.3350	-3.2189	1	
1.4110	0.0953	1	
0.6419	-0.9163	1	
2.1163	0.0000	2	
1.3350	-1.6094	2	
1.3610	-0.5108	2	
2.0541	0.1823	2	
2.2083	-0.5108	2	
2.7344	1.2809	2	
2.0412	0.4700	2	
1.8718	-0.9163	2	
1.7405	-0.9163	2	
2.6101	0.4700	2	
2.3224	1.8563	3	
2.2192	2.0669	3	
2.2618	1.1314	3	
3.9853	0.9163	3	
2.7600	2.0281	3	End of X, ING (GO3DAF)
1	1		ISX
'P' 'U'	'E' 6 T		TYP, EQUAL, PRIORS,NOBS , ATIQ
1.6292	-0.9163		
2.5572	1.6094		
2.5649	-0.2231		
0.9555	-2.3026		
3.4012	-2.3026		
3.0204	-0.2231		End of X

10.3 Program Results

GO3DCF Example Program Results
Obs

Posterior probabilities			Allocated to group	Atypicality index		
0.094	0.905	0.002	2	0.596	0.254	0.975
0.005	0.168	0.827	3	0.952	0.836	0.018
0.019	0.920	0.062	2	0.954	0.797	0.912
0.697	0.303	0.000	1	0.207	0.860	0.993
0.317	0.013	0.670	3	0.991	1.000	0.984
0.032	0.366	0.601	3	0.981	0.978	0.887

