
NAG Library Routine Document

G03DCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G03DCF allocates observations to groups according to selected rules. It is intended for use after
G03DAF.

2 Specification

SUBROUTINE G03DCF (TYP, EQUAL, PRIORS, NVAR, NG, NIG, GMN, LDGMN, GC,
DET, NOBS, M, ISX, X, LDX, PRIOR, P, LDP, IAG, ATIQ,
ATI, WK, IFAIL)

&
&

INTEGER NVAR, NG, NIG(NG), LDGMN, NOBS, M, ISX(M), LDX, LDP,
IAG(NOBS), IFAIL

&

REAL (KIND=nag_wp) GMN(LDGMN,NVAR), GC((NG+1)*NVAR*(NVAR+1)/2),
DET(NG), X(LDX,M), PRIOR(NG), P(LDP,NG),
ATI(LDP,*), WK(2*NVAR)

&
&

LOGICAL ATIQ
CHARACTER(1) TYP, EQUAL, PRIORS

3 Description

Discriminant analysis is concerned with the allocation of observations to groups using information from
other observations whose group membership is known, Xt; these are called the training set. Consider p
variables observed on ng populations or groups. Let �xj be the sample mean and Sj the within-group
variance-covariance matrix for the jth group; these are calculated from a training set of n observations
with nj observations in the jth group, and let xk be the kth observation from the set of observations to
be allocated to the ng groups. The observation can be allocated to a group according to a selected rule.
The allocation rule or discriminant function will be based on the distance of the observation from an
estimate of the location of the groups, usually the group means. A measure of the distance of the
observation from the jth group mean is given by the Mahalanobis distance, Dkj:

D2
kj ¼ xk � �xj

� �T
S�1
j xk � �xj
� �

: ð1Þ

If the pooled estimate of the variance-covariance matrix S is used rather than the within-group variance-
covariance matrices, then the distance is:

D2
kj ¼ xk � �xj

� �T
S�1 xk � �xj

� �
: ð2Þ

Instead of using the variance-covariance matrices S and Sj, G03DCF uses the upper triangular matrices
R and Rj supplied by G03DAF such that S ¼ RTR and Sj ¼ RT

j Rj. D2
kj can then be calculated as zTz

where RT
jz ¼ xk � xj

� �
or RTz ¼ xk � xð Þ as appropriate.

In addition to the distances, a set of prior probabilities of group membership, �j, for j ¼ 1; 2; . . . ; ng,
may be used, with

P
�j ¼ 1. The prior probabilities reflect your view as to the likelihood of the

observations coming from the different groups. Two common cases for prior probabilities are
�1 ¼ �2 ¼ � � � ¼ �ng , that is, equal prior probabilities, and �j ¼ nj=n, for j ¼ 1; 2; . . . ; ng, that is, prior
probabilities proportional to the number of observations in the groups in the training set.

G03DCF uses one of four allocation rules. In all four rules the p variables are assumed to follow a
multivariate Normal distribution with mean �j and variance-covariance matrix �j if the observation
comes from the jth group. The different rules depend on whether or not the within-group variance-
covariance matrices are assumed equal, i.e., �1 ¼ �2 ¼ � � � ¼ �ng , and whether a predictive or

estimative approach is used. If p xk j �j; �j

� �
is the probability of observing the observation xk from
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group j, then the posterior probability of belonging to group j is:

p j j xk; �j; �j

� �
/ p xk j �j;�j

� �
�j: ð3Þ

In the estimative approach, the parameters �j and �j in (3) are replaced by their estimates calculated
from Xt. In the predictive approach, a non-informative prior distribution is used for the parameters and a
posterior distribution for the parameters, p �j; �j j Xt

� �
, is found. A predictive distribution is then

obtained by integrating p j j xk; �j; �j

� �
p �j;�j j X
� �

over the parameter space. This predictive

distribution then replaces p xk j �j; �j

� �
in (3). See Aitchison and Dunsmore (1975), Aitchison et al.

(1977) and Moran and Murphy (1979) for further details.

The observation is allocated to the group with the highest posterior probability. Denoting the posterior
probabilities, p j j xk; �j; �j

� �
, by qj, the four allocation rules are:

(i) Estimative with equal variance-covariance matrices – Linear Discrimination

log qj / �1
2D

2
kj þ log�j

(ii) Estimative with unequal variance-covariance matrices – Quadratic Discrimination

log qj / �1
2D

2
kj þ log�j � 1

2log Sj
�� ��

(iii) Predictive with equal variance-covariance matrices

q�1
j / nj þ 1

� �
=nj

� �p=2
1þ nj= n� ng

� �
nj þ 1
� �� �� �

D2
kj

n o nþ1�ngð Þ=2

(iv) Predictive with unequal variance-covariance matrices

q�1
j / C n2

j � 1
� �

=nj

� �
Sj
�� ��n op=2

1þ nj= n2
j � 1

� �� �
D2
kj

n onj=2
;

where

C ¼
� 1

2 nj � p
� �� �

� 1
2nj
� � :

In the above the appropriate value of D2
kj from (1) or (2) is used. The values of the qj are standardized

so that,

Xng
j¼1

qj ¼ 1:

Moran and Murphy (1979) show the similarity between the predictive methods and methods based upon
likelihood ratio tests.

In addition to allocating the observation to a group, G03DCF computes an atypicality index, Ij xkð Þ. The
predictive atypicality index is returned, irrespective of the value of the parameter TYP. This represents
the probability of obtaining an observation more typical of group j than the observed xk (see Aitchison
and Dunsmore (1975) and Aitchison et al. (1977)). The atypicality index is computed for unequal
within-group variance-covariance matrices as:

Ij xkð Þ ¼ P B � z : 1
2p;

1
2 nj � p
� �� �

where P B � � : a; bð Þ is the lower tail probability from a beta distribution and

z ¼ D2
kj= D2

kj þ n2
j � 1

� �
=nj

� �
;

and for equal within-group variance-covariance matrices as:

Ij xkð Þ ¼ P B � z : 1
2p;

1
2 n� ng � pþ 1
� �� �

;

with

z ¼ D2
kj= D2

kj þ n� ng
� �

nj þ 1
� �

=nj

� �
:
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If Ij xkð Þ is close to 1 for all groups it indicates that the observation may come from a grouping not
represented in the training set. Moran and Murphy (1979) provide a frequentist interpretation of Ij xkð Þ.

4 References

Aitchison J and Dunsmore I R (1975) Statistical Prediction Analysis Cambridge

Aitchison J, Habbema J D F and Kay J W (1977) A critical comparison of two methods of statistical
discrimination Appl. Statist. 26 15–25

Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) (3rd Edition) Griffin

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

Moran M A and Murphy B J (1979) A closer look at two alternative methods of statistical discrimination
Appl. Statist. 28 223–232

Morrison D F (1967) Multivariate Statistical Methods McGraw–Hill

5 Parameters

1: TYP – CHARACTER(1) Input

On entry: whether the estimative or predictive approach is used.

TYP ¼ E
The estimative approach is used.

TYP ¼ P
The predictive approach is used.

Constraint: TYP ¼ E or P .

2: EQUAL – CHARACTER(1) Input

On entry: indicates whether or not the within-group variance-covariance matrices are assumed to
be equal and the pooled variance-covariance matrix used.

EQUAL ¼ E
The within-group variance-covariance matrices are assumed equal and the matrix R stored
in the first p pþ 1ð Þ=2 elements of GC is used.

EQUAL ¼ U
The within-group variance-covariance matrices are assumed to be unequal and the matrices
Ri, for i ¼ 1; 2; . . . ; ng, stored in the remainder of GC are used.

Constraint: EQUAL ¼ E or U .

3: PRIORS – CHARACTER(1) Input

On entry: indicates the form of the prior probabilities to be used.

PRIORS ¼ E
Equal prior probabilities are used.

PRIORS ¼ P
Prior probabilities proportional to the group sizes in the training set, nj, are used.

PRIORS ¼ I
The prior probabilities are input in PRIOR.

Constraint: PRIORS ¼ E , I or P .

4: NVAR – INTEGER Input

On entry: p, the number of variables in the variance-covariance matrices.

Constraint: NVAR � 1.
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5: NG – INTEGER Input

On entry: the number of groups, ng.

Constraint: NG � 2.

6: NIGðNGÞ – INTEGER array Input

On entry: the number of observations in each group in the training set, nj.

Constraints:

if EQUAL ¼ E , NIGðjÞ > 0 and
Xng
j¼1

NIGðjÞ > NGþ NVAR, for j ¼ 1; 2; . . . ; ng;

if EQUAL ¼ U , NIGðjÞ > NVAR, for j ¼ 1; 2; . . . ; ng.

7: GMNðLDGMN;NVARÞ – REAL (KIND=nag_wp) array Input

On entry: the jth row of GMN contains the means of the p variables for the jth group, for
j ¼ 1; 2; . . . ; nj. These are returned by G03DAF.

8: LDGMN – INTEGER Input

On entry: the first dimension of the array GMN as declared in the (sub)program from which
G03DCF is called.

Constraint: LDGMN � NG.

9: GCð NGþ 1ð Þ � NVAR� NVARþ 1ð Þ=2Þ – REAL (KIND=nag_wp) array Input

On entry: the first p pþ 1ð Þ=2 elements of GC should contain the upper triangular matrix R and
the next ng blocks of p pþ 1ð Þ=2 elements should contain the upper triangular matrices Rj.

All matrices must be stored packed by column. These matrices are returned by G03DAF. If
EQUAL ¼ E only the first p pþ 1ð Þ=2 elements are referenced, if EQUAL ¼ U only the
elements p pþ 1ð Þ=2þ 1 to ng þ 1

� �
p pþ 1ð Þ=2 are referenced.

Constraints:

if EQUAL ¼ E , the diagonal elements of R must be 6¼ 0:0;
if EQUAL ¼ U , the diagonal elements of the Rj must be 6¼ 0:0, for j ¼ 1; 2; . . . ; ng.

10: DETðNGÞ – REAL (KIND=nag_wp) array Input

On entry: if EQUAL ¼ U . the logarithms of the determinants of the within-group variance-
covariance matrices as returned by G03DAF. Otherwise DET is not referenced.

11: NOBS – INTEGER Input

On entry: the number of observations in X which are to be allocated.

Constraint: NOBS � 1.

12: M – INTEGER Input

On entry: the number of variables in the data array X.

Constraint: M � NVAR.

13: ISXðMÞ – INTEGER array Input

On entry: ISXðlÞ indicates if the lth variable in X is to be included in the distance calculations.

If ISXðlÞ > 0, the lth variable is included, for l ¼ 1; 2; . . . ;M; otherwise the lth variable is not
referenced.

Constraint: ISXðlÞ > 0 for NVAR values of l.
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14: XðLDX;MÞ – REAL (KIND=nag_wp) array Input

On entry: Xðk; lÞ must contain the kth observation for the lth variable, for k ¼ 1; 2; . . . ;NOBS and
l ¼ 1; 2; . . . ;M.

15: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which G03DCF
is called.

Constraint: LDX � NOBS.

16: PRIORðNGÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if PRIORS ¼ I , the prior probabilities for the ng groups.

Constraint: if PRIORS ¼ I , PRIORðjÞ > 0:0 and 1�
Xng
j¼1

PRIORðjÞ
�����

����� � 10�machine precision,

for j ¼ 1; 2; . . . ; ng.

On exit: if PRIORS ¼ P , the computed prior probabilities in proportion to group sizes for the ng
groups.

If PRIORS ¼ I , the input prior probabilities will be unchanged.

If PRIORS ¼ E , PRIOR is not set.

17: PðLDP;NGÞ – REAL (KIND=nag_wp) array Output

On exit: Pðk; jÞ contains the posterior probability pkj for allocating the kth observation to the jth
group, for k ¼ 1; 2; . . . ;NOBS and j ¼ 1; 2; . . . ; ng.

18: LDP – INTEGER Input

On entry: the first dimension of the arrays P and ATI as declared in the (sub)program from which
G03DCF is called.

Constraint: LDP � NOBS.

19: IAGðNOBSÞ – INTEGER array Output

On exit: the groups to which the observations have been allocated.

20: ATIQ – LOGICAL Input

On entry: ATIQ must be .TRUE. if atypicality indices are required. If ATIQ is .FALSE. the array
ATI is not set.

21: ATIðLDP; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array ATI must be at least NG if ATIQ ¼ :TRUE:, and at least
1 otherwise.

On exit: if ATIQ is .TRUE., ATIðk; jÞ will contain the predictive atypicality index for the kth
observation with respect to the jth group, for k ¼ 1; 2; . . . ;NOBS and j ¼ 1; 2; . . . ; ng.

If ATIQ is .FALSE., ATI is not set.

22: WKð2� NVARÞ – REAL (KIND=nag_wp) array Workspace

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVAR < 1,
or NG < 2,
or NOBS < 1,
or M < NVAR,
or LDGMN < NG,
or LDX < NOBS,
or LDP < NOBS,
or TYP 6¼ E or ‘P’,
or EQUAL 6¼ E or ‘U’,
or PRIORS 6¼ E , ‘I’ or ‘P’.

IFAIL ¼ 2

On entry, the number of variables indicated by ISX is not equal to NVAR,
or EQUAL ¼ E and NIGðjÞ � 0, for some j,

or EQUAL ¼ E and
Xng
j¼1

NIGðjÞ � NGþ NVAR,

or EQUAL ¼ U and NIGðjÞ � NVAR for some j.

IFAIL ¼ 3

On entry, PRIORS ¼ I and PRIORðjÞ � 0:0 for some j,

or PRIORS ¼ I and
Xng
j¼1

PRIORðjÞ is not within 10�machine precision of 1.

IFAIL ¼ 4

On entry, EQUAL ¼ E and a diagonal element of R is zero,
or EQUAL ¼ U and a diagonal element of Rj for some j is zero.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

G03DCF NAG Library Manual

G03DCF.6 Mark 25



IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or Rj

matrices. The atypicality index should be accurate to four significant places.

8 Parallelism and Performance

G03DCF is not threaded by NAG in any implementation.

G03DCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The distances D2
kj can be computed using G03DBF if other forms of discrimination are required.

10 Example

The data, taken from Aitchison and Dunsmore (1975), is concerned with the diagnosis of three ‘types’ of
Cushing’s syndrome. The variables are the logarithms of the urinary excretion rates (mg/24hr) of two
steroid metabolites. Observations for a total of 21 patients are input and the group means and R matrices
are computed by G03DAF. A further six observations of unknown type are input and allocations made
using the predictive approach and under the assumption that the within-group covariance matrices are
not equal. The posterior probabilities of group membership, qj, and the atypicality index are printed
along with the allocated group. The atypicality index shows that observations 5 and 6 do not seem to be
typical of the three types present in the initial 21 observations.

10.1 Program Text

Program g03dcfe

! G03DCF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: g03daf, g03dcf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: df, sig, stat
Integer :: i, ifail, ldgmn, ldox, ldp, ldx, &

lgc, lwk, lwt, m, n, ng, nobs, nvar, &
tdati

Logical :: atiq
Character (1) :: equal, priors, typ, weight
Character (80) :: fmt

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ati(:,:), det(:), gc(:), gmn(:,:), &

ox(:,:), p(:,:), prior(:), wk(:), &
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wt(:), x(:,:)
Integer, Allocatable :: iag(:), ing(:), isx(:), iwk(:), nig(:)

! .. Intrinsic Procedures ..
Intrinsic :: count, max

! .. Executable Statements ..
Write (nout,*) ’G03DCF Example Program Results’
Write (nout,*)

! Skip headings in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, m, ng, weight

If (weight==’W’ .Or. weight==’w’) Then
lwt = n

Else
lwt = 0

End If
ldox = n
Allocate (ox(ldox,m),ing(n),wt(lwt),isx(m))

! Read in data
If (lwt>0) Then

Read (nin,*)(ox(i,1:m),ing(i),wt(i),i=1,n)
Else

Read (nin,*)(ox(i,1:m),ing(i),i=1,n)
End If

! Read in variable inclusion flags
Read (nin,*) isx(1:m)

! Calculate NVAR
nvar = count(isx(1:m)==1)

lwk = max(n*(nvar+1),2*nvar)
ldgmn = ng
lgc = (ng+1)*nvar*(nvar+1)/2
Allocate (nig(ng),gmn(ldgmn,nvar),det(ng),gc(lgc),wk(lwk),iwk(ng))

! Compute covariance matrix
ifail = 0
Call g03daf(weight,n,m,ox,ldox,isx,nvar,ing,ng,wt,nig,gmn,ldgmn,det,gc, &

stat,df,sig,wk,iwk,ifail)

! Read in parameters controlling grouping
Read (nin,*) typ, equal, priors, nobs, atiq

If (atiq) Then
tdati = ng

Else
tdati = 1

End If
ldx = nobs
ldp = nobs
Allocate (x(ldx,m),prior(ng),p(ldp,ng),iag(nobs),ati(ldp,tdati))

! Read in data to group
Read (nin,*)(x(i,1:m),i=1,nobs)

! Read in priors
If (priors==’I’ .Or. priors==’i’) Then

Read (nin,*) prior(1:ng)
End If

! Allocate observations to groups
ifail = 0
Call g03dcf(typ,equal,priors,nvar,ng,nig,gmn,ldgmn,gc,det,nobs,m,isx,x, &

ldx,prior,p,ldp,iag,atiq,ati,wk,ifail)

! Display results
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If (atiq) Then
Write (fmt,99999) ’(2(I6,5X,’, ng, ’F6.3))’
Write (nout,*) ’ Obs Posterior Allocated’, &

’ Atypicality’
Write (nout,*) ’ probabilities to group index’
Write (nout,*)
Write (nout,fmt)(i,p(i,1:ng),iag(i),ati(i,1:ng),i=1,nobs)

Else
Write (fmt,99999) ’(I6,5X,’, ng, ’F6.3,I6))’
Write (nout,*) ’ Obs Posterior Allocated’
Write (nout,*) ’ probabilities to group ’
Write (nout,*)
Write (nout,fmt)(i,p(i,1:ng),iag(i),i=1,nobs)

End If

99999 Format (A,I0,A)
End Program g03dcfe

10.2 Program Data

G03DCF Example Program Data
21 2 3 ’U’ : N,M,NG,WEIGHT
1.1314 2.4596 1
1.0986 0.2624 1
0.6419 -2.3026 1
1.3350 -3.2189 1
1.4110 0.0953 1
0.6419 -0.9163 1
2.1163 0.0000 2
1.3350 -1.6094 2
1.3610 -0.5108 2
2.0541 0.1823 2
2.2083 -0.5108 2
2.7344 1.2809 2
2.0412 0.4700 2
1.8718 -0.9163 2
1.7405 -0.9163 2
2.6101 0.4700 2
2.3224 1.8563 3
2.2192 2.0669 3
2.2618 1.1314 3
3.9853 0.9163 3
2.7600 2.0281 3 : End of X,ING (G03DAF)
1 1 : ISX
’P’ ’U’ ’E’ 6 T : TYP,EQUAL,PRIORS,NOBS,ATIQ

1.6292 -0.9163
2.5572 1.6094
2.5649 -0.2231
0.9555 -2.3026
3.4012 -2.3026
3.0204 -0.2231 : End of X

10.3 Program Results

G03DCF Example Program Results

Obs Posterior Allocated Atypicality
probabilities to group index

1 0.094 0.905 0.002 2 0.596 0.254 0.975
2 0.005 0.168 0.827 3 0.952 0.836 0.018
3 0.019 0.920 0.062 2 0.954 0.797 0.912
4 0.697 0.303 0.000 1 0.207 0.860 0.993
5 0.317 0.013 0.670 3 0.991 1.000 0.984
6 0.032 0.366 0.601 3 0.981 0.978 0.887
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