
NAG Library Routine Document

F08RNF (ZUNCSD)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08RNF (ZUNCSD) computes the CS decomposition of a complex m by m unitary matrix X,
partitioned into a 2 by 2 array of submatrices.

2 Specification

SUBROUTINE F08RNF (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q,
X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22,
THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T,
WORK, LWORK, RWORK, LRWORK, IWORK, INFO)

&
&
&

INTEGER M, P, Q, LDX11, LDX12, LDX21, LDX22, LDU1, LDU2,
LDV1T, LDV2T, LWORK, LRWORK,
IWORK(M-min(P,M-P,Q,M-Q)), INFO

&
&

REAL (KIND=nag_wp) THETA(min(P,M-P,Q,M-Q)), RWORK(max(1,LRWORK))
COMPLEX (KIND=nag_wp) X11(LDX11,*), X12(LDX12,*), X21(LDX21,*),

X22(LDX22,*), U1(LDU1,*), U2(LDU2,*),
V1T(LDV1T,*), V2T(LDV2T,*), WORK(max(1,LWORK))

&
&

CHARACTER(1) JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS

The routine may be called by its LAPACK name zuncsd.

3 Description

The m by m unitary matrix X is partitioned as

X ¼ X11 X12

X21 X22

� �

where X11 is a p by q submatrix and the dimensions of the other submatrices X12, X21 and X22 are such
that X remains m by m.

The CS decomposition of X is X ¼ U�pV
T where U , V and �p are m by m matrices, such that

U ¼ U1 0
0 U2

� �

is a unitary matrix containing the p by p unitary matrix U1 and the m� pð Þ by m� pð Þ unitary matrix
U2;

V ¼ V1 0
0 V2

� �

is a unitary matrix containing the q by q unitary matrix V1 and the m� qð Þ by m� qð Þ unitary matrix V2;
and

�p ¼

I11 0 0 0

C 0 0 �S
0 0 0 �I12

0 0 I22 0

0 S C 0

0 I21 0 0

0
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1
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contains the r by r non-negative diagonal submatrices C and S satisfying C2 þ S2 ¼ I, where
r ¼ min p;m� p; q;m� qð Þ and the top left partition is p by q.

The identity matrix I11 is of order min p; qð Þ � r and vanishes if min p; qð Þ ¼ r.
The identity matrix I12 is of order min p;m� qð Þ � r and vanishes if min p;m� qð Þ ¼ r.
The identity matrix I21 is of order min m� p; qð Þ � r and vanishes if min m� p; qð Þ ¼ r.
The identity matrix I22 is of order min m� p;m� qð Þ � r and vanishes if min m� p;m� qð Þ ¼ r.
In each of the four cases r ¼ p; q;m� p;m� q at least two of the identity matrices vanish.

The indicated zeros represent augmentations by additional rows or columns (but not both) to the square
diagonal matrices formed by Iij and C or S.

�p does not need to be stored in full; it is sufficient to return only the values �i for i ¼ 1; 2; . . . ; r where
Cii ¼ cos �ið Þ and Sii ¼ sin �ið Þ.
The algorithm used to perform the complete CS decomposition is described fully in Sutton (2009)
including discussions of the stability and accuracy of the algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Sutton B D (2009) Computing the complete CS decomposition Numerical Algorithms (Volume 50) 1017–
1398 Springer US 33–65 http://dx.doi.org/10.1007/s11075-008-9215-6

5 Parameters

1: JOBU1 – CHARACTER(1) Input

On entry:

if JOBU1 ¼ Y , U1 is computed;

otherwise, U1 is not computed.

2: JOBU2 – CHARACTER(1) Input

On entry:

if JOBU2 ¼ Y , U2 is computed;

otherwise, U2 is not computed.

3: JOBV1T – CHARACTER(1) Input

On entry:

if JOBV1T ¼ Y , V T
1 is computed;

otherwise, V T
1 is not computed.

4: JOBV2T – CHARACTER(1) Input

On entry:

if JOBV2T ¼ Y , V T
2 is computed;

otherwise, V T
2 is not computed.
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5: TRANS – CHARACTER(1) Input

On entry:

if TRANS ¼ T , X, U1, U2, V T
1 and V T

2 are stored in row-major order;

otherwise, X, U1, U2, V T
1 and V T

2 are stored in column-major order.

6: SIGNS – CHARACTER(1) Input

On entry:

if SIGNS ¼ O , the lower-left block is made nonpositive (the other convention);

otherwise, the upper-right block is made nonpositive (the default convention).

7: M – INTEGER Input

On entry: m, the number of rows and columns in the unitary matrix X.

Constraint: M � 0.

8: P – INTEGER Input

On entry: p, the number of rows in X11 and X12.

Constraint: 0 � P � M.

9: Q – INTEGER Input

On entry: q, the number of columns in X11 and X21.

Constraint: 0 � Q � M.

10: X11ðLDX11; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X11 must be at least max 1; Pð Þ if TRANS ¼ T , and at
least Q otherwise.

On entry: the upper left partition of the unitary matrix X whose CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

11: LDX11 – INTEGER Input

On entry: the first dimension of the array X11 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraints:

if TRANS ¼ T , LDX11 � max 1;Qð Þ;
otherwise LDX11 � max 1; Pð Þ.

12: X12ðLDX12; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X12 must be at least max 1;Pð Þ if TRANS ¼ T , and at
least M� Q otherwise.

On entry: the upper right partition of the unitary matrix X whose CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

13: LDX12 – INTEGER Input

On entry: the first dimension of the array X12 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.
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Constraints:

if TRANS ¼ T , LDX12 � max 1;M� Qð Þ;
otherwise LDX12 � max 1; Pð Þ.

14: X21ðLDX21; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X21 must be at least max 1;M� Pð Þ if TRANS ¼ T , and
at least Q otherwise.

On entry: the lower left partition of the unitary matrix X whose CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

15: LDX21 – INTEGER Input

On entry: the first dimension of the array X21 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraints:

if TRANS ¼ T , LDX21 � max 1;Qð Þ;
otherwise LDX21 � max 1;M� Pð Þ.

16: X22ðLDX22; �Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array X22 must be at least max 1;M� Pð Þ if TRANS ¼ T , and
at least M� Q otherwise.

On entry: the lower right partition of the unitary matrix X CSD is desired.

On exit: contains details of the unitary matrix used in a simultaneous bidiagonalization process.

17: LDX22 – INTEGER Input

On entry: the first dimension of the array X22 as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraints:

if TRANS ¼ T , LDX22 � max 1;M� Qð Þ;
otherwise LDX22 � max 1;M� Pð Þ.

18: THETAðmin P;M� P;Q;M� Qð ÞÞ – REAL (KIND=nag_wp) array Output

On exit: the values �i for i ¼ 1; 2; . . . ; r where r ¼ min p;m� p; q;m� qð Þ. The diagonal
submatrices C and S of �p are constructed from these values as

C ¼ diag cos THETAð1Þð Þ; . . . ; cos THETAðrÞð Þð Þ and

S ¼ diag sin THETAð1Þð Þ; . . . ; sin THETAðrÞð Þð Þ.

19: U1ðLDU1; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U1 must be at least max 1;Pð Þ if JOBU1 ¼ Y , and at
least 1 otherwise.

On exit: if JOBU1 ¼ Y , U1 contains the p by p unitary matrix U1.

20: LDU1 – INTEGER Input

On entry: the first dimension of the array U1 as declared in the (sub)program from which F08RNF
(ZUNCSD) is called.

Constraint: if JOBU1 ¼ Y , LDU1 � max 1; Pð Þ.
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21: U2ðLDU2; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array U2 must be at least max 1;M� Pð Þ if JOBU2 ¼ Y , and
at least 1 otherwise.

On exit: if JOBU2 ¼ Y , U2 contains the m� p by m� p unitary matrix U2.

22: LDU2 – INTEGER Input

On entry: the first dimension of the array U2 as declared in the (sub)program from which F08RNF
(ZUNCSD) is called.

Constraint: if JOBU2 ¼ Y , LDU2 � max 1;M� Pð Þ.

23: V1TðLDV1T; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V1T must be at least max 1;Qð Þ if JOBV1T ¼ Y , and at
least 1 otherwise.

On exit: if JOBV1T ¼ Y , V1T contains the q by q unitary matrix V1
H.

24: LDV1T – INTEGER Input

On entry: the first dimension of the array V1T as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraint: if JOBV1T ¼ Y , LDV1T � max 1;Qð Þ.

25: V2TðLDV2T; �Þ – COMPLEX (KIND=nag_wp) array Output

Note: the second dimension of the array V2T must be at least max 1;M� Qð Þ if JOBV2T ¼ Y ,
and at least 1 otherwise.

On exit: if JOBV2T ¼ Y , V2T contains the m� q by m� q unitary matrix V2
H.

26: LDV2T – INTEGER Input

On entry: the first dimension of the array V2T as declared in the (sub)program from which
F08RNF (ZUNCSD) is called.

Constraint: if JOBV2T ¼ Y , LDV2T � max 1;M� Qð Þ.

27: WORKðmax 1;LWORKð ÞÞ – COMPLEX (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ returns the optimal LWORK.

If INFO > 0 on exit, WORKð2 : rÞ contains the values PHI 1ð Þ; . . . PHI r � 1ð Þ that, together with
THETA 1ð Þ; . . . THETA rð Þ, define the matrix in intermediate bidiagonal-block form remaining
after nonconvergence. INFO specifies the number of nonzero PHI’s.

28: LWORK – INTEGER Input

On entry:

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
related to LWORK is issued.

The minimum workspace required is max 1; Pð Þ þmax 1;M� Pð Þ þmax 1;Qð Þ þ
max 1;M� Qð Þ þmax 1; P;M� P;Q;M� Qð Þ þ 1; the optimal amount of workspace depends on
internal block sizes and the relative problem dimensions.

Constraint:
LWORK ¼ �1 or LWORK � max 1;Pð Þ þmax 1;M� Pð Þ þmax 1;Qð Þ þ
max 1;M� Qð Þ þmax 1; P;M� P;Q;M� Qð Þ þ 1.
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29: RWORKðmax 1;LRWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

30: LRWORK – INTEGER Input

On entry:

If LRWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array, returns this value as the first entry of the WORK array, and no error message
r e l a t e d t o L RW O R K i s i s s u e d . O t h e r w i s e t h e r e q u i r e d w o r k s p a c e i s
5�max 1;Q� 1ð Þ þ 4�max 1;Qð Þ þmax 1; 8� Qð Þ þ 1 which equates to 11 for Q ¼ 0, 18 for
Q ¼ 1 and 17� Q� 4 when Q > 1.

Constraint:
LRWORK ¼ �1 or LRWORK � 5�max 1;Q� 1ð Þ þ 4�max 1;Qð Þ þmax 1; 8� Qð Þ þ 1.

31: IWORKðM�min P;M� P;Q;M� Qð ÞÞ – INTEGER array Workspace

32: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

The Jacobi-type procedure failed to converge during an internal reduction to bidiagonal-block
form. The process requires convergence to min P;M� P;Q;M� Qð Þ values, the value of INFO
gives the number of converged values.

7 Accuracy

The computed CS decomposition is nearly the exact CS decomposition for the nearby matrix X þ Eð Þ,
where

Ek k2 ¼ O �ð Þ;

and � is the machine precision.

8 Parallelism and Performance

F08RNF (ZUNCSD) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

F08RNF (ZUNCSD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to perform the full CS decomposition is
approximately 2m3.

The real analogue of this routine is F08RAF (DORCSD).
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10 Example

This example finds the full CS decomposition of a unitary 6 by 6 matrix X (see Section 10.2) partitioned
in 3 by 3 blocks.

The decomposition is performed both on submatrices of the unitary matrix X and on separated partition
matrices. Code is also provided to perform a recombining check if required.

10.1 Program Text

Program f08rnfe

! F08RNF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: nag_wp, x04caf, x04dbf, zgemm, zuncsd

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Complex (Kind=nag_wp), Parameter :: one = (1.0_nag_wp,0.0_nag_wp)
Complex (Kind=nag_wp), Parameter :: zero = (0.0_nag_wp,0.0_nag_wp)
Integer, Parameter :: nin = 5, nout = 6, recombine = 1, &

reprint = 1
! .. Local Scalars ..

Integer :: i, ifail, info, info2, j, ldu, ldu1, &
ldu2, ldv, ldv1t, ldv2t, ldx, ldx11, &
ldx12, ldx21, ldx22, lrwork, lwork, &
m, n11, n12, n21, n22, p, q, r

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: u(:,:), u1(:,:), u2(:,:), v(:,:), &

v1t(:,:), v2t(:,:), w(:,:), &
work(:), x(:,:), x11(:,:), &
x12(:,:), x21(:,:), x22(:,:)

Complex (Kind=nag_wp) :: wdum(1)
Real (Kind=nag_wp) :: rwdum(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), theta(:)
Integer, Allocatable :: iwork(:)
Character (1) :: clabs(1), rlabs(1)

! .. Intrinsic Procedures ..
Intrinsic :: cmplx, cos, min, nint, real, sin

! .. Executable Statements ..
Write (nout,*) ’F08RNF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, p, q

r = min(min(p,q),min(m-p,m-q))

ldx = m
ldx11 = p
ldx12 = p
ldx21 = m - p
ldx22 = m - p
ldu = m
ldu1 = p
ldu2 = m - p
ldv = m
ldv1t = q
ldv2t = m - q
Allocate (x(ldx,m),u(ldu,m),v(ldv,m),theta(r),iwork(m),w(ldx,m))
Allocate (x11(ldx11,q),x12(ldx12,m-q),x21(ldx21,q),x22(ldx22,m-q))
Allocate (u1(ldu1,p),u2(ldu2,m-p),v1t(ldv1t,q),v2t(ldv2t,m-q))

! Read (by column) and print unitary X from data file
! (as, say, generated by a generalized singular value decomposition).
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Do i = 1, m
Read (nin,*) x(1:m,i)

End Do

! Print general complex matrix using matrix printing routine x04dbf.
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04dbf(’General’,’N’,m,m,x,ldx,’Bracketed’,’F7.4’, &

’ Unitary matrix X’,’Integer’,rlabs,’Integer’,clabs,80,0,ifail)
Write (nout,*)

! Compute the complete CS factorization of X:
! X11 is stored in X(1:p, 1:q), X12 is stored in X(1:p, q+1:m)
! X21 is stored in X(p+1:m, 1:q), X22 is stored in X(p+1:m, q+1:m)
! U1 is stored in U(1:p, 1:p), U2 is stored in U(p+1:m, p+1:m)
! V1 is stored in V(1:q, 1:q), V2 is stored in V(q+1:m, q+1:m)

x11(1:p,1:q) = x(1:p,1:q)
x12(1:p,1:m-q) = x(1:p,q+1:m)
x21(1:m-p,1:q) = x(p+1:m,1:q)
x22(1:m-p,1:m-q) = x(p+1:m,q+1:m)

! Workspace query first to get length of work array for complete CS
! factorization routine zuncsd/f08rnf.

lwork = -1
lrwork = -1
Call zuncsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, &
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,wdum,lwork,rwdum,lrwork,iwork, &
info)

lwork = nint(real(wdum(1)))
lrwork = nint(rwdum(1))
Allocate (work(lwork),rwork(lrwork))

! Initialize all of u, v to zero.
u(1:m,1:m) = zero
v(1:m,1:m) = zero

! This is how you might pass partitions as sub-matrices
Call zuncsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, &
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,work,lwork,rwork,lrwork,iwork, &
info)

If (info/=0) Then
Write (nout,99999) ’Failure in ZUNCSD/F08RNF. info =’, info
Go To 100

End If

! Print Theta using real matrix printing routine x04caf
! Note: U1, U2, V1T, V2T not printed since these may differ by a sign
! change in columns of U1, U2 and corresponding rows of V1T, V2T.

Write (nout,99998) ’Theta Component of CS factorization of X:’
ifail = 0
Call x04caf(’G’,’N’,r,1,theta,r,’ Theta’,ifail)
Write (nout,*)

! And this is how you might pass partitions as separate matrices.
Call zuncsd(’Yes U1’,’Yes U2’,’Yes V1T’,’Yes V2T’,’Column’,’Default’,m, &

p,q,x11,ldx11,x12,ldx12,x21,ldx21,x22,ldx22,theta,u1,ldu1,u2,ldu2,v1t, &
ldv1t,v2t,ldv2t,work,lwork,rwork,lrwork,iwork,info2)

If (info/=0) Then
Write (nout,99999) ’Failure in ZUNCSD/F08RNF. info =’, info
Go To 100

End If

! Reprint Theta using matrix printing routine x04caf.
If (reprint/=0) Then

Write (nout,99998) ’Components of CS factorization of X:’
ifail = 0
Call x04caf(’G’,’N’,r,1,theta,r,’ Theta’,ifail)
Write (nout,*)
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End If

If (recombine/=0) Then
! Recombining should return the original matrix
! Assemble Sigma_p into X

x(1:m,1:m) = zero
n11 = min(p,q) - r
n12 = min(p,m-q) - r
n21 = min(m-p,q) - r
n22 = min(m-p,m-q) - r

! Top Half
Do j = 1, n11

x(j,j) = one
End Do
Do j = 1, r

x(j+n11,j+n11) = cmplx(cos(theta(j)),0.0_nag_wp,kind=nag_wp)
x(j+n11,j+n11+r+n21+n22) = cmplx(-sin(theta(j)),0.0_nag_wp, &

kind=nag_wp)
End Do
Do j = 1, n12

x(j+n11+r,j+n11+r+n21+n22+r) = -one
End Do

! Bottom half
Do j = 1, n22

x(p+j,q+j) = one
End Do
Do j = 1, r

x(p+n22+j,j+n11) = cmplx(sin(theta(j)),0.0_nag_wp,kind=nag_wp)
x(p+n22+j,j+r+n21+n22) = cmplx(cos(theta(j)),0.0_nag_wp,kind=nag_wp)

End Do
Do j = 1, n21

x(p+n22+r+j,n11+r+j) = one
End Do

! multiply U * Sigma_p into w
Call zgemm(’n’,’n’,m,m,m,one,u,ldu,x,ldx,zero,w,ldx)

! form U * Sigma_p * V^T into u
Call zgemm(’n’,’n’,m,m,m,one,w,ldx,v,ldv,zero,u,ldu)

! Print recombined matrix using complex matrix printing routine x04dbf.
Write (nout,*)
ifail = 0
Call x04dbf(’General’,’N’,m,m,u,ldu,’Bracketed’,’F7.4’, &

’ Recombined matrix X = U * Sigma_p * V^H’,’Integer’,rlabs, &
’Integer’,clabs,80,0,ifail)

End If
100 Continue

99999 Format (1X,A,I4)
99998 Format (/1X,A/)

End Program f08rnfe

10.2 Program Data

F08RNF Example Program Data

6 2 4 : m p q

( -1.3038E-02, -3.2595E-01)
( 4.2764E-01, -6.2582E-01)
( -3.2595E-01, 1.6428E-01)
( 1.5906E-01, -5.2151E-03)
( -1.7210E-01, -1.3038E-02)
( -2.6336E-01, -2.4772E-01) : column 1 of unitary matrix X

( -1.4039E-01, -2.6167E-01)
( 8.6298E-02, -3.8174E-02)
( 3.8163E-01, -1.8219E-01)
( -2.8207E-01, 1.9732E-01)
( -5.0942E-01, -5.0319E-01)
( -1.0861E-01, 2.8474E-01) : column 2 of unitary matrix X
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( 2.5177E-01, -7.9789E-01)
( -3.2188E-01, 1.6112E-01)
( 1.3231E-01, -1.4565E-02)
( 2.1598E-01, 1.8813E-01)
( 3.6488E-02, 2.0316E-01)
( 1.0906E-01, -1.2712E-01) : column 3 of unitary matrix X

( -5.0956E-02, -2.1750E-01)
( 1.1979E-01, 1.6319E-01)
( -5.0671E-01, 1.8615E-01)
( -4.0163E-01, 2.6787E-01)
( 1.9271E-01, 1.5574E-01)
( -8.8159E-02, 5.6169E-01) : column 4 of unitary matrix X

( -4.5947E-02, 1.4052E-04)
( -8.0311E-02, -4.3605E-01)
( 5.9714E-02, -5.8974E-01)
( -4.6443E-02, 3.0864E-01)
( 5.7843E-01, -1.2439E-01)
( 1.5763E-02, 4.7130E-02) : column 5 of unitary matrix X

( -5.2773E-02, -2.2492E-01)
( -3.8117E-02, -2.1907E-01)
( -1.3850E-01, -9.0941E-02)
( -3.7354E-01, -5.5148E-01)
( -1.8815E-02, -5.5686E-02)
( 6.5007E-01, 4.9173E-03) : column 6 of unitary matrix X

10.3 Program Results

F08RNF Example Program Results

Unitary matrix X
1 2 3 4

1 (-0.0130,-0.3260) (-0.1404,-0.2617) ( 0.2518,-0.7979) (-0.0510,-0.2175)
2 ( 0.4276,-0.6258) ( 0.0863,-0.0382) (-0.3219, 0.1611) ( 0.1198, 0.1632)
3 (-0.3260, 0.1643) ( 0.3816,-0.1822) ( 0.1323,-0.0146) (-0.5067, 0.1862)
4 ( 0.1591,-0.0052) (-0.2821, 0.1973) ( 0.2160, 0.1881) (-0.4016, 0.2679)
5 (-0.1721,-0.0130) (-0.5094,-0.5032) ( 0.0365, 0.2032) ( 0.1927, 0.1557)
6 (-0.2634,-0.2477) (-0.1086, 0.2847) ( 0.1091,-0.1271) (-0.0882, 0.5617)

5 6
1 (-0.0459, 0.0001) (-0.0528,-0.2249)
2 (-0.0803,-0.4360) (-0.0381,-0.2191)
3 ( 0.0597,-0.5897) (-0.1385,-0.0909)
4 (-0.0464, 0.3086) (-0.3735,-0.5515)
5 ( 0.5784,-0.1244) (-0.0188,-0.0557)
6 ( 0.0158, 0.0471) ( 0.6501, 0.0049)

Theta Component of CS factorization of X:

Theta
1

1 0.1973
2 0.5386

Components of CS factorization of X:

Theta
1

1 0.1973
2 0.5386

Recombined matrix X = U * Sigma_p * V^H
1 2 3 4

1 (-0.0130,-0.3259) (-0.1404,-0.2617) ( 0.2518,-0.7979) (-0.0510,-0.2175)
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2 ( 0.4276,-0.6258) ( 0.0863,-0.0382) (-0.3219, 0.1611) ( 0.1198, 0.1632)
3 (-0.3259, 0.1643) ( 0.3816,-0.1822) ( 0.1323,-0.0146) (-0.5067, 0.1861)
4 ( 0.1591,-0.0052) (-0.2821, 0.1973) ( 0.2160, 0.1881) (-0.4016, 0.2679)
5 (-0.1721,-0.0130) (-0.5094,-0.5032) ( 0.0365, 0.2032) ( 0.1927, 0.1557)
6 (-0.2634,-0.2477) (-0.1086, 0.2847) ( 0.1091,-0.1271) (-0.0882, 0.5617)

5 6
1 (-0.0459, 0.0001) (-0.0528,-0.2249)
2 (-0.0803,-0.4361) (-0.0381,-0.2191)
3 ( 0.0597,-0.5897) (-0.1385,-0.0909)
4 (-0.0464, 0.3086) (-0.3735,-0.5515)
5 ( 0.5784,-0.1244) (-0.0188,-0.0557)
6 ( 0.0158, 0.0471) ( 0.6501, 0.0049)
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