NAG Library Routine Document
 E04LYF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E04LYF is an easy-to-use modified-Newton algorithm for finding a minimum of a function, $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ subject to fixed upper and lower bounds on the independent variables, $x_{1}, x_{2}, \ldots, x_{n}$ when first and second derivatives of F are available. It is intended for functions which are continuous and which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

```
SUBROUTINE EO4LYF (N, IBOUND, FUNCT2, HESS2, BL, BU, X, F, G, IW, LIW,
    W, LW, IUSER, RUSER, IFAIL)
INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) BL(N), BU'(N), X(N), F, G(N), W(LW), RUSER(*)
EXTERNAL FUNCT2, HESS2
```


3 Description

E04LYF is applicable to problems of the form:

$$
\operatorname{Minimize} F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { subject to } \quad l_{j} \leq x_{j} \leq u_{j}, \quad j=1,2, \ldots, n
$$

when first and second derivatives of $F(x)$ are available.
Special provision is made for problems which actually have no bounds on the x_{j}, problems which have only non-negativity bounds and problems in which $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$. You must supply a subroutine to calculate the values of $F(x)$ and its first derivatives at any point x and a subroutine to calculate the second derivatives.
From a starting point you supplied there is generated, on the basis of estimates of the curvature of $F(x)$, a sequence of feasible points which is intended to converge to a local minimum of the constrained function.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72 National Physical Laboratory

5 Parameters

1: N - INTEGER Input
On entry: the number n of independent variables.
Constraint: $\mathrm{N} \geq 1$.
2: IBOUND - INTEGER Input
On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It must be set to one of the following values:

IBOUND $=0$
If you are supplying all the l_{j} and u_{j} individually.
$\operatorname{IBOUND}=1$
If there are no bounds on any x_{j}.
IBOUND $=2$
If all the bounds are of the form $0 \leq x_{j}$.
IBOUND $=3$
If $l_{1}=l_{2}=\cdots=l_{n}$ and $u_{1}=u_{2}=\cdots=u_{n}$.
Constraint: $0 \leq \mathrm{IBOUND} \leq 3$.
3: FUNCT2 - SUBROUTINE, supplied by the user.
External Procedure
You must supply this routine to calculate the values of the function $F(x)$ and its first derivatives $\frac{\partial F}{\partial x_{j}}$ at any point x. It should be tested separately before being used in conjunction with E04LYF (see the E04 Chapter Introduction).

```
The specification of FUNCT2 is:
SUBROUTINE FUNCT2 (N, XC, FC, GC, IUSER, RUSER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), RUSER(*)
    N - INTEGER
                                    Input
    On entry: the number n of variables.
    XC(N) - REAL (KIND=nag_wp) array Input
    On entry: the point }x\mathrm{ at which the function and its derivatives are required.
    FC - REAL (KIND=nag_wp)
        Output
    On exit: the value of the function F at the current point x.
4: GC(N) - REAL (KIND=nag_wp) array
    Output
    On exit: GC}(j)\mathrm{ must be set to the value of the first derivative }\frac{\partialF}{\partial\mp@subsup{x}{j}{}}\mathrm{ at the point }x\mathrm{ , for
    j=1,2,\ldots..n.
5: IUSER (*) - INTEGER array User Workspace
6: RUSER (*) - REAL (KIND=nag_wp) array User Workspace
    FUNCT2 is called with the parameters IUSER and RUSER as supplied to E04LYF. You
    are free to use the arrays IUSER and RUSER to supply information to FUNCT2 as an
    alternative to using COMMON global variables.
```

FUNCT2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which E04LYF is called. Parameters denoted as Input must not be changed by this procedure.

4: HESS2 - SUBROUTINE, supplied by the user.
External Procedure
You must supply this routine to evaluate the elements $H_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}$ of the matrix of second derivatives of $F(x)$ at any point x. It should be tested separately before being used in conjunction with E04LYF (see the E04 Chapter Introduction).

```
The specification of HESS2 is:
SUBROUTINE HESS2 (N, XC, HESLC, LH, HESDC, IUSER, RUSER)
```

```
INTEGER N, LH, IUSER(*)
REAL (KIND=nag_wp) XC(N), HESLC(LH), HESDC(N), RUSER(*)
1: N - INTEGER Input
    On entry: the number n of variables.
2: XC(N) - REAL (KIND=nag_wp) array Input
    On entry: the point }x\mathrm{ at which the derivatives are required.
3: HESLC(LH) - REAL (KIND=nag_wp) array
Output
On exit: HESS2 must place the strict lower triangle of the second derivative matrix \(H\) in HESLC, stored by rows, i.e., set \(\operatorname{HESLC}((i-1)(i-2) / 2+j)=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}\), for \(i=2,3, \ldots, n\) and \(j=1,2, \ldots, i-1\). (The upper triangle is not required because the matrix is symmetric.)
4: LH - INTEGER
On entry: the length of the array HESLC.
5: \(\quad \operatorname{HESDC}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=\) nag_wp) array
Output
On exit: must contain the diagonal elements of the second derivative matrix, i.e., set \(\operatorname{HESDC}(j)=\frac{\partial^{2} F}{\partial x_{j}^{2}}\), for \(j=1,2, \ldots, n\).
6: \(\operatorname{IUSER}(*)\) - INTEGER array User Workspace
7: \(\operatorname{RUSER}(*)\) - REAL (KIND=nag_wp) array User Workspace
HESS2 is called with the parameters IUSER and RUSER as supplied to E04LYF. You are free to use the arrays IUSER and RUSER to supply information to HESS2 as an alternative to using COMMON global variables.
```

HESS2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which E04LYF is called. Parameters denoted as Input must not be changed by this procedure.

BL(N) - REAL (KIND=nag_wp) array

Input/Output

On entry: the lower bounds l_{j}.
If IBOUND is set to $0, \operatorname{BL}(j)$ must be set to l_{j}, for $j=1,2, \ldots, n$. (If a lower bound is not specified for any x_{j}, the corresponding $\operatorname{BL}(j)$ should be set to -10^{6}.)

If IBOUND is set to 3 , you must set $\mathrm{BL}(1)$ to l_{1}; E04LYF will then set the remaining elements of BL equal to $\mathrm{BL}(1)$.

On exit: the lower bounds actually used by E04LYF.
BU(N) - REAL (KIND=nag_wp) array
Input/Output
On entry: the upper bounds u_{j}.
If IBOUND is set to $0, \mathrm{BU}(j)$ must be set to u_{j}, for $j=1,2, \ldots, n$. (If an upper bound is not specified for any x_{j} the corresponding $\mathrm{BU}(j)$ should be set to 10^{6}.)
If IBOUND is set to 3 , you must set $\mathrm{BU}(1)$ to u_{1}; E04LYF will then set the remaining elements of BU equal to $B U(1)$.
On exit: the upper bounds actually used by E04LYF.

7: $\quad \mathrm{X}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
On entry: $\mathrm{X}(j)$ must be set to a guess at the j th component of the position of the minimum, for $j=1,2, \ldots, n$. The routine checks the gradient and the Hessian matrix at the starting point, and is more likely to detect any error in your programming if the initial $\mathrm{X}(j)$ are nonzero and mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL $=0$ on exit, $\mathrm{X}(j)$ is the j th component of the position of the minimum.

8: $\quad \mathrm{F}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Output
On exit: the value of $F(x)$ corresponding to the final point stored in X .
9: $\quad \mathrm{G}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the value of $\frac{\partial F}{\partial x_{j}}$ corresponding to the final point stored in X , for $j=1,2, \ldots, n$; the value of $\mathrm{G}(j)$ for variables not on a bound should normally be close to zero.

10: IW(LIW) - INTEGER array Workspace
11: LIW - INTEGER Input
On entry: the dimension of the array IW as declared in the (sub)program from which E04LYF is called.

Constraint: LIW $\geq \mathrm{N}+2$.
W(LW) - REAL (KIND=nag_wp) array Workspace
13: LW - INTEGER Input
On entry: the dimension of the array W as declared in the (sub)program from which E04LYF is called.

Constraint: $\mathrm{LW} \geq \max (\mathrm{N} \times(\mathrm{N}+7), 10)$.
14: IUSER $(*)$ - INTEGER array User Workspace
15: $\operatorname{RUSER}(*)$ - REAL (KIND=nag_wp) array User Workspace
IUSER and RUSER are not used by E04LYF, but are passed directly to FUNCT2 and HESS2 and may be used to pass information to these routines as an alternative to using COMMON global variables.

16: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Note: E04LYF may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N}<1$,
or \quad IBOUND <0,
or \quad IBOUND >3,
or $\quad \operatorname{IBOUND}=0$ and $\mathrm{BL}(j)>\mathrm{BU}(j)$ for some j,
or $\quad \operatorname{IBOUND}=3$ and $\mathrm{BL}(1)>\mathrm{BU}(1)$,
or \quad LIW $<N+2$,
or $\quad L W<\max (10, N \times(N+7))$.
IFAIL $=2$
There have been $50 \times \mathrm{N}$ function evaluations, yet the algorithm does not seem to be converging. The calculations can be restarted from the final point held in X. The error may also indicate that $F(x)$ has no minimum.

IFAIL $=3$
The conditions for a minimum have not all been met but a lower point could not be found and the algorithm has failed.

IFAIL $=4$
Not used. (This value of the parameter is included so as to make the significance of IFAIL $=5$ etc. consistent in the easy-to-use routines.)

IFAIL $=5$
IFAIL $=6$
IFAIL $=7$
IFAIL $=8$
There is some doubt about whether the point x found by E04LYF is a minimum. The degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL $=5$ it is probable that the final x gives a good estimate of the position of a minimum, but when IFAIL $=8$ it is very unlikely that the routine has found a minimum.

IFAIL $=9$

In the search for a minimum, the modulus of one of the variables has become very large $\left(\sim 10^{6}\right)$. This indicates that there is a mistake in user-supplied subroutines FUNCT2 or HESS2, that your problem has no finite solution, or that the problem needs rescaling (see Section 9).

IFAIL $=10$
It is very likely that you have made an error in forming the gradient.
IFAIL $=11$
It is very likely that you have made an error in forming the second derivatives.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.
If you are dissatisfied with the result (e.g., because IFAIL $=5,6,7$ or 8), it is worth restarting the calculations from a different starting point (not the point at which the failure occurred) in order to avoid the region which caused the failure.

7 Accuracy

When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to get about $t / 2-1$ decimals accuracy in x, and about $t-1$ decimals accuracy in F, provided the problem is reasonably well scaled.

8 Parallelism and Performance

E04LYF is not threaded by NAG in any implementation.
E04LYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the behaviour of $F(x)$ and the distance of the starting point from the solution. The number of operations performed in an iteration of E04LYF is roughly proportional to $n^{3}+O\left(n^{2}\right)$. In addition, each iteration makes one call of HESS2 and at least one call of FUNCT2. So, unless $F(x)$, the gradient vector and the matrix of second derivatives can be evaluated very quickly, the run time will be dominated by the time spent in user-supplied subroutines FUNCT2 and HESS2.
Ideally the problem should be scaled so that at the solution the value of $F(x)$ and the corresponding values of $x_{1}, x_{2}, \ldots x_{n}$ are each in the range $(-1,+1)$, and so that at points a unit distance away from the solution, F is approximately a unit value greater than at the minimum. It is unlikely that you will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that E04LYF will take less computer time.

10 Example

A program to minimize

$$
F=\left(x_{1}+10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}-x_{4}\right)^{4}
$$

subject to

$$
\begin{aligned}
1 & \leq x_{1} \leq 3 \\
-2 & \leq x_{2} \leq 0 \\
1 & \leq x_{4} \leq 3
\end{aligned}
$$

starting from the initial guess $(3,-1,0,1)$. (In practice, it is worth trying to make user-supplied subroutines FUNCT2 and HESS2 as efficient as possible. This has not been done in the example program for reasons of clarity.)

10.1 Program Text

E04LYF Example Program Text
Mark 25 Release. NAG Copyright 2014.
Module eO4lyfe_mod
EO4LYF Example Program Module: Parameters and User-defined Routines
.. Use Statements ..
Use nag_library, Only: nag_wp
.. Implicit None Statement ..
Implicit None
.. Accessibility Statements ..
Private
Public :: funct2, hess2
.. Parameters ..
Integer, Parameter, Public : $\mathrm{n}=4$, nout $=6$
Integer, Parameter, Public : \quad liw $=n+2$
Integer, Parameter, Public : \quad lw $=n *(n+7)$
Contains
Subroutine funct2(n, xc,fc, gc,iuser, ruser)
Routine to evaluate objective function and its 1st derivatives.
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) : f f
Integer, Intent (In) : : n
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : gc(n)
Real (Kind=nag_wp), Intent (Inout) : : ruser(*)
Real (Kind=nag_wp), Intent (In) : xc(n)
Integer, Intent (Inout) : iuser(*)
.. Local Scalars ..
Real (Kind=nag_wp) : : x1, x2, x3, x4
.. Executable Statements ..
$\mathrm{x} 1=\mathrm{xc}(1)$
$\mathrm{x} 2=\mathrm{xc}(2)$
$\mathrm{x} 3=\mathrm{xc}(3)$
$x 4=x c(4)$
$\mathrm{fc}=\left(\mathrm{x} 1+10.0 _\right.$nag_wp*x2)$* * 2+5.0 _$nag_wp* $(x 3-x 4) * * 2+\&$
(x2-2.0_nag_wp*x3)**4 + 10.0_nag_wp* (x1-x4)**4
$g c(1)=2.0 _n a g _w p *\left(x 1+10.0 _n a g _w p * x 2\right)+40.0 _n a g _w p *(x 1-x 4) * * 3$
$g c(2)=20.0 _n a g _w p *\left(x 1+10 . \overline{0} _n a g _w p * x 2\right)+4.0 _n a g _w p *\left(x 2-2.0 _n a g _w p * x 3\right.$ \&) ** 3
gc (3) = 10.0_nag_wp* (x3-x4) - 8.0_nag_wp*(x2-2.0_nag_wp*x3)**3
$\mathrm{gc}(4)=-10.0 _$nag_wp* $(\mathrm{x} 3-\mathrm{x} 4)-40.0 _$nag_wp* $(\mathrm{x} 1-\mathrm{x} 4) * * 3$
Return
End Subroutine funct2
Subroutine hess2(n, xc,heslc, lh,hesdc,iuser, ruser)
Routine to evaluate 2nd derivatives.
.. Scalar Arguments ..
Integer, Intent (In) : : lh, n
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : hesdc(n), heslc(lh)
Real (Kind=nag_wp), Intent (Inout) : : ruser (*)
Real (Kind=nag_wp), Intent (In) : xc (n)
Integer, Intent (Inout) : : iuser (*)
.. Local Scalars ..
Real (Kind=nag_wp) : : x1, x2, x3, x4
.. Executable Statements ..
$\mathrm{x} 1=\mathrm{xc}(1)$
$\mathrm{x} 2=\mathrm{xc}(2)$
$x 3=x C(3)$
$\mathrm{x} 4=\mathrm{xc}(4)$
$\operatorname{hesdc}(1)=2.0 _n a g _w p+120.0 _$nag_wp*(x1-x4)**2
hesdc (2) $=200.0 _$nag_wp $+12.0 _n a g _w p *\left(x 2-2.0 _n a g _w p * x 3\right) * * 2$
hesdc (3) = 10.0_nag_wp + 48.0_nag_wp*(x2-2.0_nag_wp*x3)**2
$\operatorname{hesdc}(4)=10.0 _$nag_wp $+120.0 _$nag_wp* $(x 1-x 4) * * 2$

```
        heslc(1) = 20.0_nag_wp
        heslc(2) = 0.0_nag_wp
        heslc(3) = -24.0_nag_wp*(x2-2.0_nag_wp*x3)**2
        heslc(4) = -120.0_nag_wp*(x1-x4)**2
        heslc(5) = 0.0_nag_wp
        heslc(6) = -10.0_nag_wp
            Return
        End Subroutine hess2
        End Module e04lyfe_mod
        Program e04lyfe
! EO4LYF Example Main Program
! .. Use Statements ..
    Use nag_library, Only: e04lyf, nag_wp
    Use eO4lyfe_mod, Only: funct2, hess2, liw, lw, n, nout
! .. Implicit None Statement ..
    Implicit None
! .. Local Scalars ..
    Real (Kind=nag_wp) :: f
    Integer :: ibound, ifail
! .. Local Arrays ..
    Real (Kind=nag_wp) :: bl(n), bu(n), g(n), ruser(1), &
    .. Executable Statements ..
    Write (nout,*) 'EO4LYF Example Program Results'
    Flush (nout)
    ibound = 0
    X(3) is unconstrained, so we set BL(3) to a large negative
    number and BU(3) to a large positive number.
    bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
    bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)
    Set up starting point
    x(1:n) = (/3.0_nag__wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)
    ifail = -1
    Call e04lyf(n,ibound,funct2,hess2,bl,bu,x,f,g,iw,liw,w,lw,iuser,ruser, &
        ifail)
    Select Case (ifail)
    Case (0,2:)
        Write (nout,*)
        Write (nout,99999) 'Function value on exit is ', f
        Write (nout,99999) 'at the point', x(1:n)
        Write (nout,*) 'The corresponding (machine dependent) gradient is'
        Write (nout,99998) g(1:n)
    End Select
99999 Format (1X,A,4F9.4)
99998 Format (13X,4E12.4)
    End Program e04lyfe
```


10.2 Program Data

None.

10.3 Program Results

```
E04LYF Example Program Results
** It is probable that a local minimum has been found,
** but it cannot be guaranteed.
** ABNORMAL EXIT from NAG Library routine EO4LYF: IFAIL = 5
** NAG soft failure - control returned
Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is
    0.2953E+00 -0.5867E-09 0.1173E-08 0.5907E+01
```

