F11 Chapter Contents
F11 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF11XAF

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F11XAF computes a matrix-vector or transposed matrix-vector product involving a real sparse nonsymmetric matrix stored in coordinate storage format.

## 2  Specification

 SUBROUTINE F11XAF ( TRANS, N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)
 INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL REAL (KIND=nag_wp) A(NNZ), X(N), Y(N) CHARACTER(1) TRANS, CHECK

## 3  Description

F11XAF computes either the matrix-vector product $y=Ax$, or the transposed matrix-vector product $y={A}^{\mathrm{T}}x$, according to the value of the argument TRANS, where $A$ is an $n$ by $n$ sparse nonsymmetric matrix, of arbitrary sparsity pattern. The matrix $A$ is stored in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction). The array A stores all nonzero elements of $A$, while arrays IROW and ICOL store the corresponding row and column indices respectively.
It is envisaged that a common use of F11XAF will be to compute the matrix-vector product required in the application of F11BEF to sparse linear systems. An illustration of this usage appears in Section 10 in F11DDF.
None.

## 5  Parameters

1:     $\mathrm{TRANS}$ – CHARACTER(1)Input
On entry: specifies whether or not the matrix $A$ is transposed.
${\mathbf{TRANS}}=\text{'N'}$
$y=Ax$ is computed.
${\mathbf{TRANS}}=\text{'T'}$
$y={A}^{\mathrm{T}}x$ is computed.
Constraint: ${\mathbf{TRANS}}=\text{'N'}$ or $\text{'T'}$.
2:     $\mathrm{N}$ – INTEGERInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{N}}\ge 1$.
3:     $\mathrm{NNZ}$ – INTEGERInput
On entry: the number of nonzero elements in the matrix $A$.
Constraint: $1\le {\mathbf{NNZ}}\le {{\mathbf{N}}}^{2}$.
4:     $\mathrm{A}\left({\mathbf{NNZ}}\right)$ – REAL (KIND=nag_wp) arrayInput
On entry: the nonzero elements in the matrix $A$, ordered by increasing row index, and by increasing column index within each row. Multiple entries for the same row and column indices are not permitted. The routine F11ZAF may be used to order the elements in this way.
5:     $\mathrm{IROW}\left({\mathbf{NNZ}}\right)$ – INTEGER arrayInput
6:     $\mathrm{ICOL}\left({\mathbf{NNZ}}\right)$ – INTEGER arrayInput
On entry: the row and column indices of the nonzero elements supplied in array A.
Constraints:
IROW and ICOL must satisfy the following constraints (which may be imposed by a call to F11ZAF):
• $1\le {\mathbf{IROW}}\left(\mathit{i}\right)\le {\mathbf{N}}$ and $1\le {\mathbf{ICOL}}\left(\mathit{i}\right)\le {\mathbf{N}}$, for $\mathit{i}=1,2,\dots ,{\mathbf{NNZ}}$;
• ${\mathbf{IROW}}\left(\mathit{i}-1\right)<{\mathbf{IROW}}\left(\mathit{i}\right)$ or ${\mathbf{IROW}}\left(\mathit{i}-1\right)={\mathbf{IROW}}\left(\mathit{i}\right)$ and ${\mathbf{ICOL}}\left(\mathit{i}-1\right)<{\mathbf{ICOL}}\left(\mathit{i}\right)$, for $\mathit{i}=2,3,\dots ,{\mathbf{NNZ}}$.
7:     $\mathrm{CHECK}$ – CHARACTER(1)Input
On entry: specifies whether or not the CS representation of the matrix $A$, values of N, NNZ, IROW and ICOL should be checked.
${\mathbf{CHECK}}=\text{'C'}$
Checks are carried on the values of N, NNZ, IROW and ICOL.
${\mathbf{CHECK}}=\text{'N'}$
None of these checks are carried out.
Constraint: ${\mathbf{CHECK}}=\text{'C'}$ or $\text{'N'}$.
8:     $\mathrm{X}\left({\mathbf{N}}\right)$ – REAL (KIND=nag_wp) arrayInput
On entry: the vector $x$.
9:     $\mathrm{Y}\left({\mathbf{N}}\right)$ – REAL (KIND=nag_wp) arrayOutput
On exit: the vector $y$.
10:   $\mathrm{IFAIL}$ – INTEGERInput/Output
On entry: IFAIL must be set to $0$, $-1\text{​ or ​}1$. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value $-1\text{​ or ​}1$ is recommended. If the output of error messages is undesirable, then the value $1$ is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is $0$. When the value $-\mathbf{1}\text{​ or ​}\mathbf{1}$ is used it is essential to test the value of IFAIL on exit.
On exit: ${\mathbf{IFAIL}}={\mathbf{0}}$ unless the routine detects an error or a warning has been flagged (see Section 6).

## 6  Error Indicators and Warnings

If on entry ${\mathbf{IFAIL}}={\mathbf{0}}$ or $-{\mathbf{1}}$, explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
${\mathbf{IFAIL}}=1$
 On entry, ${\mathbf{TRANS}}\ne \text{'N'}$ or $\text{'T'}$, or ${\mathbf{CHECK}}\ne \text{'C'}$ or $\text{'N'}$.
${\mathbf{IFAIL}}=2$
 On entry, ${\mathbf{N}}<1$, or ${\mathbf{NNZ}}<1$, or ${\mathbf{NNZ}}>{{\mathbf{N}}}^{2}$.
${\mathbf{IFAIL}}=3$
On entry, the arrays IROW and ICOL fail to satisfy the following constraints:
• $1\le {\mathbf{IROW}}\left(i\right)\le {\mathbf{N}}$ and $1\le {\mathbf{ICOL}}\left(i\right)\le {\mathbf{N}}$, for $i=1,2,\dots ,{\mathbf{NNZ}}$;
• ${\mathbf{IROW}}\left(i-1\right)<{\mathbf{IROW}}\left(i\right)$, or ${\mathbf{IROW}}\left(i-1\right)={\mathbf{IROW}}\left(i\right)$ and ${\mathbf{ICOL}}\left(i-1\right)<{\mathbf{ICOL}}\left(i\right)$, for $i=2,3,\dots ,{\mathbf{NNZ}}$.
Therefore a nonzero element has been supplied which does not lie within the matrix $A$, is out of order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove duplicates.
${\mathbf{IFAIL}}=-99$
See Section 3.8 in the Essential Introduction for further information.
${\mathbf{IFAIL}}=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
${\mathbf{IFAIL}}=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

## 7  Accuracy

The computed vector $y$ satisfies the error bound:
• ${‖y-Ax‖}_{\infty }\le c\left(n\right)\epsilon {‖A‖}_{\infty }{‖x‖}_{\infty }$, if ${\mathbf{TRANS}}=\text{'N'}$, or
• ${‖y-{A}^{\mathrm{T}}x‖}_{\infty }\le c\left(n\right)\epsilon {‖{A}^{\mathrm{T}}‖}_{\infty }{‖x‖}_{\infty }$, if ${\mathbf{TRANS}}=\text{'T'}$,
where $c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision.

## 8  Parallelism and Performance

F11XAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F11XAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

### 9.1  Timing

The time taken for a call to F11XAF is proportional to NNZ.

### 9.2  Use of CHECK

It is expected that a common use of F11XAF will be to compute the matrix-vector product required in the application of F11BEF to sparse linear systems. In this situation F11XAF is likely to be called many times with the same matrix $A$. In the interests of both reliability and efficiency you are recommended to set ${\mathbf{CHECK}}=\text{'C'}$ for the first of such calls, and to set ${\mathbf{CHECK}}=\text{'N'}$ for all subsequent calls.

## 10  Example

This example reads in a sparse matrix $A$ and a vector $x$. It then calls F11XAF to compute the matrix-vector product $y=Ax$ and the transposed matrix-vector product $y={A}^{\mathrm{T}}x$.

### 10.1  Program Text

Program Text (f11xafe.f90)

### 10.2  Program Data

Program Data (f11xafe.d)

### 10.3  Program Results

Program Results (f11xafe.r)