F08 Chapter Contents
F08 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF08AEF (DGEQRF)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F08AEF (DGEQRF) computes the $QR$ factorization of a real $m$ by $n$ matrix.

## 2  Specification

 SUBROUTINE F08AEF ( M, N, A, LDA, TAU, WORK, LWORK, INFO)
 INTEGER M, N, LDA, LWORK, INFO REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1,LWORK))
The routine may be called by its LAPACK name dgeqrf.

## 3  Description

F08AEF (DGEQRF) forms the $QR$ factorization of an arbitrary rectangular real $m$ by $n$ matrix. No pivoting is performed.
If $m\ge n$, the factorization is given by:
 $A = Q R 0 ,$
where $R$ is an $n$ by $n$ upper triangular matrix and $Q$ is an $m$ by $m$ orthogonal matrix. It is sometimes more convenient to write the factorization as
 $A = Q1 Q2 R 0 ,$
which reduces to
 $A = Q1R ,$
where ${Q}_{1}$ consists of the first $n$ columns of $Q$, and ${Q}_{2}$ the remaining $m-n$ columns.
If $m, $R$ is trapezoidal, and the factorization can be written
 $A = Q R1 R2 ,$
where ${R}_{1}$ is upper triangular and ${R}_{2}$ is rectangular.
The matrix $Q$ is not formed explicitly but is represented as a product of $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with $Q$ in this representation (see Section 9).
Note also that for any $k, the information returned in the first $k$ columns of the array A represents a $QR$ factorization of the first $k$ columns of the original matrix $A$.

## 4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Parameters

1:     $\mathrm{M}$ – INTEGERInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{M}}\ge 0$.
2:     $\mathrm{N}$ – INTEGERInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{N}}\ge 0$.
3:     $\mathrm{A}\left({\mathbf{LDA}},*\right)$ – REAL (KIND=nag_wp) arrayInput/Output
Note: the second dimension of the array A must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
On entry: the $m$ by $n$ matrix $A$.
On exit: if $m\ge n$, the elements below the diagonal are overwritten by details of the orthogonal matrix $Q$ and the upper triangle is overwritten by the corresponding elements of the $n$ by $n$ upper triangular matrix $R$.
If $m, the strictly lower triangular part is overwritten by details of the orthogonal matrix $Q$ and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
4:     $\mathrm{LDA}$ – INTEGERInput
On entry: the first dimension of the array A as declared in the (sub)program from which F08AEF (DGEQRF) is called.
Constraint: ${\mathbf{LDA}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{M}}\right)$.
5:     $\mathrm{TAU}\left(*\right)$ – REAL (KIND=nag_wp) arrayOutput
Note: the dimension of the array TAU must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{M}},{\mathbf{N}}\right)\right)$.
On exit: further details of the orthogonal matrix $Q$.
6:     $\mathrm{WORK}\left(\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{LWORK}}\right)\right)$ – REAL (KIND=nag_wp) arrayWorkspace
On exit: if ${\mathbf{INFO}}={\mathbf{0}}$, ${\mathbf{WORK}}\left(1\right)$ contains the minimum value of LWORK required for optimal performance.
7:     $\mathrm{LWORK}$ – INTEGERInput
On entry: the dimension of the array WORK as declared in the (sub)program from which F08AEF (DGEQRF) is called.
If ${\mathbf{LWORK}}=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.
Suggested value: for optimal performance, ${\mathbf{LWORK}}\ge {\mathbf{N}}×\mathit{nb}$, where $\mathit{nb}$ is the optimal block size.
Constraint: ${\mathbf{LWORK}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$ or ${\mathbf{LWORK}}=-1$.
8:     $\mathrm{INFO}$ – INTEGEROutput
On exit: ${\mathbf{INFO}}=0$ unless the routine detects an error (see Section 6).

## 6  Error Indicators and Warnings

${\mathbf{INFO}}<0$
If ${\mathbf{INFO}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.

## 7  Accuracy

The computed factorization is the exact factorization of a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision.

## 8  Parallelism and Performance

F08AEF (DGEQRF) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08AEF (DGEQRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is approximately $\frac{2}{3}{n}^{2}\left(3m-n\right)$ if $m\ge n$ or $\frac{2}{3}{m}^{2}\left(3n-m\right)$ if $m.
To form the orthogonal matrix $Q$ F08AEF (DGEQRF) may be followed by a call to F08AFF (DORGQR):
```CALL DORGQR(M,M,MIN(M,N),A,LDA,TAU,WORK,LWORK,INFO)
```
but note that the second dimension of the array A must be at least M, which may be larger than was required by F08AEF (DGEQRF).
When $m\ge n$, it is often only the first $n$ columns of $Q$ that are required, and they may be formed by the call:
```CALL DORGQR(M,N,N,A,LDA,TAU,WORK,LWORK,INFO)
```
To apply $Q$ to an arbitrary real rectangular matrix $C$, F08AEF (DGEQRF) may be followed by a call to F08AGF (DORMQR). For example,
```CALL DORMQR('Left','Transpose',M,P,MIN(M,N),A,LDA,TAU,C,LDC,WORK, &
LWORK,INFO)```
forms $C={Q}^{\mathrm{T}}C$, where $C$ is $m$ by $p$.
To compute a $QR$ factorization with column pivoting, use F08BBF (DTPQRT) or F08BEF (DGEQPF).
The complex analogue of this routine is F08ASF (ZGEQRF).

## 10  Example

This example solves the linear least squares problems
 $minimize⁡ Axi - bi 2 , i=1,2$
where ${b}_{1}$ and ${b}_{2}$ are the columns of the matrix $B$,
 $A = -0.57 -1.28 -0.39 0.25 -1.93 1.08 -0.31 -2.14 2.30 0.24 0.40 -0.35 -1.93 0.64 -0.66 0.08 0.15 0.30 0.15 -2.13 -0.02 1.03 -1.43 0.50 and B= -3.15 2.19 -0.11 -3.64 1.99 0.57 -2.70 8.23 0.26 -6.35 4.50 -1.48 .$

### 10.1  Program Text

Program Text (f08aefe.f90)

### 10.2  Program Data

Program Data (f08aefe.d)

### 10.3  Program Results

Program Results (f08aefe.r)