NAG Library Function Document

nag_multi_normal (g01hbc)

1 Purpose

nag_multi_normal (g01hbc) returns the upper tail, lower tail or central probability associated with a multivariate Normal distribution of up to ten dimensions.

2 Specification

3 Description

Let the vector random variable $X = (X_1, X_2, ..., X_n)^T$ follow an *n*-dimensional multivariate Normal distribution with mean vector μ and *n* by *n* variance-covariance matrix Σ , then the probability density function, $f(X : \mu, \Sigma)$, is given by

$$f(X:\mu,\Sigma) = (2\pi)^{-(1/2)n} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(X-\mu)^{\mathrm{T}} \Sigma^{-1}(X-\mu)\right).$$

The lower tail probability is defined by:

$$P(X_1 \le b_1, \dots, X_n \le b_n : \mu, \Sigma) = \int_{-\infty}^{b_1} \cdots \int_{-\infty}^{b_n} f(X : \mu, \Sigma) \, dX_n \cdots \, dX_1.$$

The upper tail probability is defined by:

$$P(X_1 \ge a_1, \dots, X_n \ge a_n : \mu, \Sigma) = \int_{a_1}^{\infty} \cdots \int_{a_n}^{\infty} f(X : \mu, \Sigma) \, dX_n \cdots \, dX_1.$$

The central probability is defined by:

$$P(a_1 \le X_1 \le b_1, \dots, a_n \le X_n \le b_n : \mu, \Sigma) = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(X : \mu, \Sigma) \, dX_n \cdots \, dX_1.$$

To evaluate the probability for $n \ge 3$, the probability density function of X_1, X_2, \ldots, X_n is considered as the product of the conditional probability of $X_1, X_2, \ldots, X_{n-2}$ given X_{n-1} and X_n and the marginal bivariate Normal distribution of X_{n-1} and X_n . The bivariate Normal probability can be evaluated as described in nag_bivariate_normal_dist (g01hac) and numerical integration is then used over the remaining n-2 dimensions. In the case of n = 3, nag_1d_quad_gen_1 (d01sjc) is used and for n > 3nag_multid_quad_adapt_1 (d01wcc) is used.

To evaluate the probability for n = 1 a direct call to nag_prob_normal (g01eac) is made and for n = 2 calls to nag_bivariate_normal_dist (g01hac) are made.

4 References

Kendall M G and Stuart A (1969) The Advanced Theory of Statistics (Volume 1) (3rd Edition) Griffin

5	Arguments	
1:	tail – Nag_TailProbability	Input
	On entry: indicates which probability is to be returned.	
	tail = Nag_LowerTail The lower tail probability is returned.	
	tail = Nag_UpperTail The upper tail probability is returned.	
	tail = Nag_Central The central probability is returned.	
	Constraint: tail = Nag_LowerTail, Nag_UpperTail or Nag_Central.	
2:	\mathbf{n} – Integer	Input
	On entry: n, the number of dimensions. Constraint: $1 \le n \le 10$.	
3:	$\mathbf{a}[\mathbf{n}]$ – const double	Input
	On entry: if $tail = Nag_Central or Nag_UpperTail$, the lower bounds, a_i , for $i = 1, 2,, n$ If $tail = Nag_LowerTail$, a is not referenced.) .
4:	b [n] – const double	Input
	On entry: if tail = Nag_Central or Nag_LowerTail, the upper bounds, b_i , for $i = 1, 2,, n$	J.
	If $tail = Nag_UpperTail$, b is not referenced.	
	Constraint: if tail = Nag_Central, $\mathbf{a}[i-1] < \mathbf{b}[i-1]$, for $i = 1, 2,, n$.	
5:	mean[n] – const double	Input
	On entry: μ , the mean vector of the multivariate Normal distribution.	
6:	$sigma[n \times tdsig] - const double$	Input
	Note: the (i, j) th element of the matrix is stored in sigma $[(i - 1) \times tdsig + j - 1]$.	
	On entry: Σ , the variance-covariance matrix of the multivariate Normal distribution. On lower triangle is referenced.	ly the
	Constraint: Σ must be positive definite.	
7:	tdsig – Integer	Input
	On entry: the stride separating matrix column elements in the array sigma.	
	Constraint: $\mathbf{tdsig} \geq \mathbf{n}$.	
8:	tol – double	Input
	On entry: if $n > 2$ the relative accuracy required for the probability, and if the upper or the tail probability is requested then tol is also used to determine the cut-off points, see Section 2.5 Section 2	
	If $n = 1$, tol is not referenced.	
	Suggested value: $tol = 0.0001$.	
	Constraint: if $\mathbf{n} > 1$, tol > 0.0.	
9:	maxpts – Integer	Input
	On entry: the maximum number of sub-intervals or integrand evaluations.	

If n = 3, then the maximum number of sub-intervals used by nag_1d_quad_gen_1 (d01sjc) is **maxpts**/4. Note however increasing **maxpts** above 1000 will not increase the maximum number of sub-intervals above 250.

If n > 3 the maximum number of integrand evaluations used by nag_multid_quad_adapt_1 (d01wcc) is $\alpha(\text{maxpts}/n - 1)$, where $\alpha = 2^{n-2} + 2(n-2)^2 + 2(n-2) + 1$.

If n = 1 or 2, then **maxpts** will not be used.

Suggested value: 2000 if n > 3 and 1000 if n = 3.

Constraint: if $n \ge 3$, maxpts $\ge 4 \times n$.

10: **fail** – NagError *

Input/Output

g01hbc

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, $\mathbf{tdsig} = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{tdsig} \ge \mathbf{n}$.

NE_2_REAL_ARRAYS_CONS

On entry, the $\langle value \rangle$ value in **b** is less than or equal to the corresponding value in **a**.

NE_ACC

Full accuracy not achieved, relative accuracy $= \langle value \rangle$. A larger value of **tol** can be tried or the length of the workspace increased. The returned value is an approximation to the required result.

NE_ALLOC_FAIL

Dynamic memory allocation failed. See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_INT_ARG_CONS

On entry, $maxpts = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: if $\mathbf{n} \geq 3$, $maxpts \geq 4 \times \mathbf{n}$.

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $1 \leq \mathbf{n} \leq 10$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG. See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly. See Section 3.6.5 in the Essential Introduction for further information.

NE_POS_DEF

On entry, sigma is not positive definite.

NE_REAL_ARG_CONS

On entry, $\mathbf{tol} = \langle value \rangle$. Constraint: $\mathbf{tol} > 0.0$.

NE_ROUND_OFF

Accuracy requested by **tol** is too strict: $\mathbf{tol} = \langle value \rangle$. Round-off error has prevented the requested accuracy from being achieved; a larger value of **tol** can be tried. The returned value will be an approximation to the required result.

7 Accuracy

The accuracy should be as specified by tol. When on exit fail.code = NE_ACC the approximate accuracy achieved is given in the error message. For the upper and lower tail probabilities the infinite limits are approximated by cut-off points for the n-2 dimensions over which the numerical integration takes place; these cut-off points are given by $\Phi^{-1}(\text{tol}/(10 \times n))$, where Φ^{-1} is the inverse univariate Normal distribution function.

8 Parallelism and Performance

nag_multi_normal (g01hbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_multi_normal (g01hbc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken is related to the number of dimensions, the range over which the integration takes place $(b_i - a_i)$, for i = 1, 2, ..., n and the value of Σ as well as the accuracy required. As the numerical integration does not take place over the last two dimensions speed may be improved by arranging X so that the largest ranges of integration are for X_{n-1} and X_n .

10 Example

This example reads in the mean and covariance matrix for a multivariate Normal distribution and computes and prints the associated central probability.

10.1 Program Text

```
/* nag_multi_normal (g01hbc) Example Program.
   *
   * Copyright 2014 Numerical Algorithms Group.
   *
   * Mark 6, 2000.
   * Mark 7, revised.
   *
   */
#include <stdio.h>
#include <nag.h>
#include <nag.stdlib.h>
#include <nagg01.h>
#define SIGMA(I, J) sigma[((I) -1)*n + (J) -1]
int main(void)
```

{

```
Integer
                      exit_status = 0, i, j, maxpts, n;
                      nag_enum_arg[40];
 char
                      *a = 0, *b = 0, *mean = 0, prob, *sigma = 0, tol;
 double
 Nag_TailProbability tail;
 NagError
                      fail;
 INIT_FAIL(fail);
 printf("nag_multi_normal (q01hbc) Example Program Results\n");
  /* Skip heading in data file */
#ifdef _WIN32
 scanf_s("%*[^\n]");
#else
 scanf("%*[^\n]");
#endif
#ifdef _WIN32
  scanf_s("%"NAG_IFMT" %lf %39s", &n, &tol, nag_enum_arg, _countof(nag_en-
um_arg));
#else
 scanf("%"NAG_IFMT" %lf %39s", &n, &tol, nag_enum_arg);
#endif
 /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
  */
 tail = (Nag_TailProbability) nag_enum_name_to_value(nag_enum_arg);
  if (!(a = NAG_ALLOC(n, double))
    || !(b = NAG_ALLOC(n, double))
     !(mean = NAG_ALLOC(n, double))
     || !(sigma = NAG_ALLOC(n*n, double)))
    {
     printf("Allocation failure\n");
     exit_status = -1;
      goto END;
    }
 for (j = 1; j <= n; ++j)
#ifdef _WIN32
   scanf_s("%lf", &mean[j - 1]);
#else
    scanf("%lf", &mean[j - 1]);
#endif
 for (i = 1; i <= n; ++i)
    for (j = 1; j <= n; ++j)
#ifdef _WIN32
     scanf_s("%lf", &SIGMA(i, j));
#else
     scanf("%lf", &SIGMA(i, j));
#endif
  if (tail == Nag_Central || tail == Nag_UpperTail)
    for (j = 1; j <= n; ++j)
#ifdef WIN32
     scanf_s("%lf", &a[j - 1]);
#else
     scanf("%lf", &a[j - 1]);
#endif
 if (tail == Nag_Central || tail == Nag_LowerTail)
   for (j = 1; j \le n; ++j)
#ifdef _WIN32
     scanf_s("%lf", &b[j - 1]);
#else
     scanf("%lf", &b[j - 1]);
#endif
 maxpts = 2000;
 /* nag_multi_normal (g01hbc).
   * Computes probabilities for the multivariate Normal
  * distribution
  */
 prob = nag_multi_normal(tail, n, a, b, mean, sigma, n, tol, maxpts,
```

```
&fail);
 if (fail.code == NE_NOERROR || fail.code == NE_ACC
    || fail.code == NE_ROUND_OFF)
    {
     printf("\nMultivariate Normal probability = %6.4f\n", prob);
    }
 else
    {
     printf("Error from nag_multi_normal (g01hbc).\n%s\n",
             fail.message);
      exit_status = 1;
     goto END;
   }
END:
 NAG_FREE(a);
 NAG_FREE(b);
 NAG_FREE(mean);
 NAG_FREE(sigma);
 return exit_status;
}
```

10.2 Program Data

nag_multi_normal (gO1hbc) Example Program Data 4 0.0001 Nag_Central 0.0 0.0 0.0 0.0 1.0 0.9 0.9 0.9 0.9 1.0 0.9 0.9 0.9 0.9 1.0 0.9 0.9 0.9 0.9 1.0 -2.0 -2.0 -2.0 -2.0 2.0 2.0 2.0 2.0 10.3 Program Results

nag_multi_normal (g01hbc) Example Program Results

Multivariate Normal probability = 0.9142