
NAG Library Function Document

nag_opt_miqp_mps_read (e04mxc)

1 Purpose

nag_opt_miqp_mps_read (e04mxc) reads data for sparse linear programming, mixed integer linear
programming, quadratic programming or mixed integer quadratic programming problems from an
external file which is in standard or compatible MPS input format.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_miqp_mps_read (Nag_FileID fileid, Integer maxn, Integer maxm,
Integer maxnnz, Integer maxncolh, Integer maxnnzh, Integer maxlintvar,
Integer mpslst, Integer *n, Integer *m, Integer *nnz, Integer *ncolh,
Integer *nnzh, Integer *lintvar, Integer *iobj, double a[],
Integer irowa[], Integer iccola[], double bl[], double bu[],
char pnames[][9], Integer *nname, char crname[][9], double h[],
Integer irowh[], Integer iccolh[], Integer *minmax, Integer intvar[],
NagError *fail)

3 Description

nag_opt_miqp_mps_read (e04mxc) reads data for linear programming (LP) or quadratic programming
(QP) problems (or their mixed integer variants) from an external file which is prepared in standard or
compatible MPS (see IBM (1971)) input format. It then initializes n (the number of variables), m (the
number of general linear constraints), the m by n matrix A, the vectors l, u, c (stored in row iobj of A)
and the n by n Hessian matrix H for use with nag_opt_sparse_convex_qp_solve (e04nqc). This function
is designed to solve problems of the form

minimize
x

cTxþ 1
2x

THx subject to l � x
Ax

� �
� u:

3.1 MPS input format

The input file of data may only contain two types of lines:

1. Indicator lines (specifying the type of data which is to follow).

2. Data lines (specifying the actual data).

A section is a combination of an indicator line and its corresponding data line(s). Any characters beyond
column 80 are ignored. Indicator lines must not contain leading blank characters (in other words they
must begin in column 1). The following displays the order in which the indicator lines must appear in
the file:

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.1



NAME user-supplied name (optional)
OBJSENSE (optional)

data line
OBJNAME (optional)

data line
ROWS

data line(s)
COLUMNS

data line(s)
RHS

data line(s)
RANGES (optional)

data line(s)
BOUNDS (optional)

data line(s)
QUADOBJ (optional)

data line(s)
ENDATA

A data line follows a fixed format, being made up of fields as defined below. The contents of the fields
may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2�3 5�12 15�22 25�36 40�47 50�61
Contents Code Name Name Value Name Value

Each name and code must consist of ‘printable’ characters only; names and codes supplied must match
the case used in the following descriptions. Values are read using a field width of 12. This allows values
to be entered in several equivalent forms. For example, 1:2345678, 1:2345678eþ 0, 123:45678e�2 and
12345678e�07 all represent the same number. It is safest to include an explicit decimal point.

Lines with an asterisk (�) in column 1 will be considered comment lines and will be ignored by the
function.

Columns outside the six fields must be blank, except for columns 72–80, whose contents are ignored by
the function. A non-blank character outside the predefined six fields and columns 72–80 is considered to
be a major error (fail:code ¼ NE_MPS_ILLEGAL_DATA_LINE; see Section 6), unless it is part of a
comment.

3.1.1 NAME Section (optional)

The NAME section is the only section where the data must be on the same line as the indicator. The
‘user-supplied name’ must be in field 3 but may be blank.

Field Required Description
3 No Name of the problem

3.1.2 OBJSENSE Section (optional)

The data line in this section can be used to specify the sense of the objective function. If this section is
present it must contain only one data line. If the section is missing or empty, minimization is assumed.

Field Required Description
2 No Sense of the objective function

Field 2 may contain either MIN, MAX, MINIMIZE or MAXIMIZE.

e04mxc NAG Library Manual

e04mxc.2 Mark 25



3.1.3 OBJNAME Section (optional)

The data line in this section can be used to specify the name of a free row (see Section 3.1.4) that should
be used as the objective function. If this section is present it must contain only one data line. If the
section is missing or is empty, the first free row will be chosen instead. Alternatively, OBJNAME can be
overridden by setting nonempty pnames½1� (see Section 5).

Field Required Description
2 No Row name to be used as the objective function

Field 2 must contain a valid row name.

3.1.4 ROWS Section

The data lines in this section specify unique row (constraint) names and their inequality types (i.e.,
unconstrained, ¼, � or �).

Field Required Description
1 Yes Inequality key
2 Yes Row name

The inequality key specifies each row’s type. It must be E, G, L or N and can be in either column 2 or 3.

Inequality Key Description l u
N Free row �1 1
G Greater than or equal to finite 1
L Less than or equal to �1 finite
E Equal to finite l

Row type N stands for ‘Not binding’. It can be used to define the objective row. The objective row is a
free row that specifies the vector c in the linear objective term cTx. If there is more than one free row,
the first free row is chosen, unless another free row name is specified by OBJNAME (see Section 3.1.3)
or pnames½1� (see Section 5). Note that c is assumed to be zero if either the chosen row does not appear
in the COLUMNS section (i.e., has no nonzero elements) or there are no free rows defined in the ROWS
section.

3.1.5 COLUMNS Section

Data lines in this section specify the names to be assigned to the variables (columns) in the general
linear constraint matrix A, and define, in terms of column vectors, the actual values of the corresponding
matrix elements.

Field Required Description
2 Yes Column name
3 Yes Row name
4 Yes Value
5 No Row name
6 No Value

Each data line in the COLUMNS section defines the nonzero elements of A or c. Any elements of A or c
that are undefined are assumed to be zero. Nonzero elements of A must be grouped by column, that is to
say that all of the nonzero elements in the jth column of A must be specified before those in the j þ 1th
column, for j ¼ 1; 2; . . . ; n� 1. Rows may appear in any order within the column.

3.1.5.1 Integer Markers

For backward compatibility nag_opt_miqp_mps_read (e04mxc) allows you to define the integer variables
within the COLUMNS section using integer markers, although this is not recommended as markers can
be treated differently by different MPS readers; you should instead define any integer variables in the
BOUNDS section (see below). Each marker line must have the following format:

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.3



Field Required Description
2 No Marker ID
3 Yes Marker tag
5 Yes Marker type

The marker tag must be 0MARKER0. The marker type must be 0INTORG0 to start reading integer variables
and 0INTEND0 to finish reading integer variables. This implies that a row cannot be named 0MARKER0,
0INTORG0 or 0INTEND0. Please note that both marker tag and marker type comprise of 8 characters as a 0 is
the mandatory first and last character in the string. You may wish to have several integer marker sections
within the COLUMNS section, in which case each marker section must begin with an 0INTORG0 marker
and end with an 0INTEND0 marker and there should not be another marker between them.

Field 2 is ignored by nag_opt_miqp_mps_read (e04mxc). When an integer variable is declared it will
keep its default bounds unless they are changed in the BOUNDS section. This may vary between
different MPS readers.

3.1.6 RHS Section

This section specifies the right-hand side values (if any) of the general linear constraint matrix A.

Field Required Description
2 Yes RHS name
3 Yes Row name
4 Yes Value
5 No Row name
6 No Value

The MPS file may contain several RHS sets distinguished by RHS name. If an RHS name is defined in
pnames½2� (see Section 5) then nag_opt_miqp_mps_read (e04mxc) will read in only that RHS vector,
otherwise the first RHS set will be used.

Only the nonzero RHS elements need to be specified. Note that if an RHS is given to the objective
function it will be ignored by nag_opt_miqp_mps_read (e04mxc). An RHS given to the objective
function is dealt with differently by different MPS readers, therefore it is safer to not define an RHS of
the objective function in your MPS file. Note that this section may be empty, in which case the RHS
vector is assumed to be zero.

3.1.7 RANGES Section (optional)

Ranges are used to modify the interpretation of constraints defined in the ROWS section (see
Section 3.1.4) to the form l � Ax � u, where both l and u are finite. The range of the constraint is
r ¼ u� l.

Field Required Description
2 Yes Range name
3 Yes Row name
4 Yes Value
5 No Row name
6 No Value

The range of each constraint implies an upper and lower bound dependent on the inequality key of each
constraint, on the RHS b of the constraint (as defined in the RHS section), and on the range r.

Inequality Key Sign of r l u
E þ b bþ r
E � bþ r b
G þ=� b bþ rj j
L þ=� b� rj j b
N þ=� �1 þ1

e04mxc NAG Library Manual

e04mxc.4 Mark 25



If a range name is defined in pnames½3� (see Section 5) then the function will read in only the range set
of that name, otherwise the first set will be used.

3.1.8 BOUNDS Section (optional)

These lines specify limits on the values of the variables (the quantities l and u in l � x � u). If a
variable is not specified in the bound set then it is automatically assumed to lie between 0 and þ1.

Field Required Description
1 Yes Bound type identifier
2 Yes Bound name
3 Yes Column name
4 Yes/No Value

Note: field 4 is required only if the bound type identifier is one of UP, LO, FX, UI or LI in which case it
gives the value k below. If the bound type identifier is FR, MI, PL or BV, field 4 is ignored and it is
recommended to leave it blank.

The table below describes the acceptable bound type identifiers and how each determines the variables’
bounds.

Bound Type
Identifier l u

Integer
Variable?

UP unchanged k No
LO k unchanged No
FX k k No
FR �1 1 No
MI �1 unchanged No
PL unchanged 1 No
BV 0 1 Yes
UI unchanged k Yes
LI k unchanged Yes

If a bound name is defined in pnames½4� (see Section 5) then the function will read in only the bound set
of that name, otherwise the first set will be used.

3.1.9 QUADOBJ Section (optional)

The QUADOBJ section defines nonzero elements of the upper or lower triangle of the Hessian matrix H.

Field Required Description
2 Yes Column name (HColumn Index)
3 Yes Column name (HRow Index)
4 Yes Value
5 No Column name (HRow Index)
6 No Value

Each data line in the QUADOBJ section defines one (or optionally two) nonzero elements Hij of the
matrix H. Each element Hij is given as a triplet of row index i, column index j and a value. The column
names (as defined in the COLUMNS section) are used to link the names of the variables and the indices
i and j. More precisely, the matrix H on output will have a nonzero element

Hij ¼ Value

where index j belongs to HColumn Index and index i to one of the HRow Indices such that

crname½j� 1� ¼ Column name ðHColumn IndexÞ and

crname½i� 1� ¼ Column name ðHRow IndexÞ.

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.5



It is only necessary to define either the upper or lower triangle of the H matrix; either will suffice. Any
elements that have been defined in the upper triangle of the matrix will be moved to the lower triangle of
the matrix, then any repeated nonzeros will be summed.

Note: it is much more efficient for nag_opt_sparse_convex_qp_solve (e04nqc) to have the H matrix
defined by the first ncolh column names. If the nonzeros of H are defined by any columns that are not in
the first ncolh of n then nag_opt_miqp_mps_read (e04mxc) will rearrange the matrices A and H so that
they are.

3.2 Query Mode

nag_opt_miqp_mps_read (e04mxc) offers a ‘query mode’ to quickly give upper estimates on the sizes of
user arrays. In this mode any expensive checks of the data and of the file format are skipped, providing a
prompt count of the number of variables, constraints and matrix nonzeros. This might be useful in the
common case where the size of the problem is not known in advance.

You may activate query mode by setting any of the following: maxn < 1, maxm < 1, maxnnz < 1,
maxncolh < 0 or maxnnzh < 0. If no major formatting error is detected in the data file, fail:code ¼
NE_NOERROR is returned and the upper estimates are given as stated in Table 1. Alternatively, the
function switches to query mode while the file is being read if it is discovered that the provided space is
insufficient (that is, if n > maxn, m > maxm, nnz > maxnnz, ncolh > maxncolh, nnzh > maxnnzh or
lintvar > maxlintvar). In this case fail:code ¼ NE_INT_MAX is returned.

Argument Name Upper Estimate for
n maxn
m maxm
nnz maxnnz
ncolh maxncolh
nnzh maxnnzh
lintvar maxlintvar

Table 1

The recommended practice is shown in Section 10, where the function is invoked twice. The first call
queries the array lengths required, after which the data arrays are allocated to be of these sizes. The
second call reads the data using the sufficiently-sized arrays.

4 References

IBM (1971) MPSX – Mathematical programming system Program Number 5734 XM4 IBM Trade
Corporation, New York

5 Arguments

1: fileid – Nag_FileID Input

On entry: the ID of the MPSX data file to be read as returned by a call to nag_open_file (x04acc).

Constraint: fileid � 0.

2: maxn – Integer Input

On entry: an upper limit for the number of variables in the problem.

If maxn < 1, nag_opt_miqp_mps_read (e04mxc) will start in query mode (see Section 3.2).

3: maxm – Integer Input

On entry: an upper limit for the number of general linear constraints (including the objective row)
in the problem.

If maxm < 1, nag_opt_miqp_mps_read (e04mxc) will start in query mode (see Section 3.2).

e04mxc NAG Library Manual

e04mxc.6 Mark 25



4: maxnnz – Integer Input

On entry: an upper limit for the number of nonzeros (including the objective row) in the problem.

If maxnnz < 1, nag_opt_miqp_mps_read (e04mxc) will start in query mode (see Section 3.2).

5: maxncolh – Integer Input

On entry: an upper limit for the dimension of the matrix H.

If maxncolh < 0, nag_opt_miqp_mps_read (e04mxc) will start in query mode (see Section 3.2).

6: maxnnzh – Integer Input

On entry: an upper limit for the number of nonzeros of the matrix H.

If maxnnzh < 0, nag_opt_miqp_mps_read (e04mxc) will start in query mode (see Section 3.2).

7: maxlintvar – Integer Input

On entry: if maxlintvar � 0, an upper limit for the number of integer variables.

If maxlintvar < 0, nag_opt_miqp_mps_read (e04mxc) will treat all integer variables in the file as
continuous variables.

8: mpslst – Integer Input

On entry: if mpslst 6¼ 0, summary messages are sent to stdout as nag_opt_miqp_mps_read
(e04mxc) reads through the data file. This can be useful for debugging the file. If mpslst ¼ 0, then
no summary is produced.

9: n – Integer * Output

On exit: if nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or
returned with fail:code ¼ NE_INT_MAX, an upper estimate of the number of variables of the
problem. Otherwise, n, the actual number of variables in the problem.

10: m – Integer * Output

On exit: if nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or
returned with fail:code ¼ NE_INT_MAX, an upper estimate of the number of general linear
constraints in the problem (including the objective row). Otherwise m, the actual number of
general linear constaints of the problem.

11: nnz – Integer * Output

On exit: if nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or
returned with fail:code ¼ NE_INT_MAX, an upper estimate of the number of nonzeros in the
problem (including the objective row). Otherwise the actual number of nonzeros in the problem
(including the objective row).

12: ncolh – Integer * Output

On exit: if nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or
returned with fail:code ¼ NE_INT_MAX, an upper estimate of the value of ncolh required by
nag_opt_sparse_convex_qp_solve (e04nqc). In this context ncolh is the number of leading
nonzero columns of the Hessian matrix H. Otherwise, the actual dimension of the matrix H.

13: nnzh – Integer * Output

On exit: if nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or
returned with fail:code ¼ NE_INT_MAX, an upper estimate of the number of nonzeros of the
matrix H. Otherwise, the actual number of nonzeros of the matrix H.

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.7



14: lintvar – Integer * Output

On exit: if on entry maxlintvar < 0, all integer variables are treated as continuous and
lintvar ¼ �1.

If nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or returned with
fail:code ¼ NE_INT_MAX, an upper estimate of the number of integer variables of the problem.
Otherwise, the actual number of integer variables of the problem.

15: iobj – Integer * Output

On exit: if iobj > 0, row iobj of A is a free row containing the nonzero coefficients of the vector
c.

If iobj ¼ 0, the coefficients of c are assumed to be zero.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2) iobj is not referenced
and may be NULL.

16: a½dim� – double Output

Note: the dimension, dim, of the array a must be at least maxnnz when maxnnz > 0.

On exit: the nonzero elements of A, ordered by increasing column index.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), a is not referenced
and may be NULL.

17: irowa½dim� – Integer Output

Note: the dimension, dim, of the array irowa must be at least maxnnz when maxnnz > 0.

On exit: the row indices of the nonzero elements stored in a.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), irowa is not
referenced and may be NULL.

18: iccola½dim� – Integer Output

Note: the dimension, dim, of the array iccola must be at least maxnþ 1 when maxn > 0.

On exit: a set of pointers to the beginning of each column of A. More precisely, iccola½i � 1�
contains the index in a of the start of the ith column, for i ¼ 1; 2; . . . ; n. Note that iccola½0� ¼ 1
and iccola½n� ¼ nnzþ 1.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), iccola is not
referenced and may be NULL.

19: bl½dim� – double Output
20: bu½dim� – double Output

Note: the dimension, dim, of the arrays bl and bu must be at least maxnþmaxm when
maxn > 0 and maxm > 0.

On exit: bl contains the vector l (the lower bounds) and bu contains the vector u (the upper
bounds), for all the variables and constraints in the following order. The first n elements of each
array contains the bounds on the variables x and the next m elements contains the bounds for the
linear objective term cTx and for the general linear constraints Ax (if any). Note that an ‘infinite’
lower bound is indicated by bl½j� 1� ¼ �1:0eþ 20 and an ‘infinite’ upper bound by
bu½j� 1� ¼ þ1:0eþ 20. In other words, any element of u greater than or equal to 1020 will be
regarded as þ1 (and similarly any element of l less than or equal to �1020 will be regarded as
�1) . I f t h i s v a l u e i s d e e m e d t o b e ‘ i n a p p r o p r i a t e ’ , b e f o r e c a l l i n g
nag_opt_sparse_convex_qp_solve (e04nqc) you are recommended to reset the value of its
optional argument Infinite Bound Size and make any necessary changes to bl and/or bu.

e04mxc NAG Library Manual

e04mxc.8 Mark 25



If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), bl and bu are not
referenced and may be NULL.

21: pnames½5�½9� – char Input/Output

On entry: a set of names associated with the MPSX form of the problem.

pnames½0�
Must either contain the name of the problem or be blank.

pnames½1�
Must either be blank or contain the name of the objective row (in which case it overrides
the OBJNAME section and the default choice of the first objective free row).

pnames½2�
Must either contain the name of the RHS set to be used or be blank (in which case the first
RHS set is used).

pnames½3�
Must either contain the name of the RANGE set to be used or be blank (in which case the
first RANGE set (if any) is used).

pnames½4�
Must either contain the name of the BOUNDS set to be used or be blank (in which case the
first BOUNDS set (if any) is used).

On exit: a set of names associated with the problem as defined in the MPSX data file as follows:

pnames½0�
Contains the name of the problem (or blank if none).

pnames½1�
Contains the name of the objective row (or blank if none).

pnames½2�
Contains the name of the RHS set (or blank if none).

pnames½3�
Contains the name of the RANGE set (or blank if none).

pnames½4�
Contains the name of the BOUNDS set (or blank if none).

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), pnames is not
referenced and may be NULL.

22: nname – Integer * Output

On exit: nþm, the total number of variables and constraints in the problem (including the
objective row).

If nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or returned with
fail:code ¼ NE_INT_MAX, nname is not set. In the former case you may pass NULL instead.

23: crname½dim�½9� – char Output

Note: the dimension, dim, of the array crname must be at least maxnþmaxm when maxn > 0
and maxm > 0.

On exit: the MPS names of all the variables and constraints in the problem in the following order.
The first n elements contain the MPS names for the variables and the next m elements contain the
MPS names for the objective row and general linear constraints (if any). Note that the MPS name
for the objective row is stored in crname½nþ iobj� 1�.
If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), crname is not
referenced and may be NULL.

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.9



24: h½dim� – double Output

Note: the dimension, dim, of the array h must be at least maxnnzh when maxnnzh > 0.

On exit: the nnzh nonzero elements of H, arranged by increasing column index.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), h is not referenced
and may be NULL.

25: irowh½dim� – Integer Output

Note: the dimension, dim, of the array irowh must be at least maxnnzh when maxnnzh > 0.

On exit: the nnzh row indices of the elements stored in H.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), irowh is not
referenced and may be NULL.

26: iccolh½dim� – Integer Output

Note: the dimension, dim, of the array iccolh must be at least maxncolhþ 1 when maxncolh > 0.

On exit: a set of pointers to the beginning of each column of H. More precisely, iccolh½i � 1�
contains the index in H of the start of the ith column, for i ¼ 1; 2; . . . ; ncolh. Note that
iccolh½0� ¼ 1 and iccolh½ncolh� ¼ nnzhþ 1.

If nag_opt_miqp_mps_read (e04mxc) is run in query mode (see Section 3.2), iccolh is not
referenced and may be NULL.

27: minmax – Integer * Output

On exit: minmax defines the direction of the optimization as read from the MPS file. By default
the function assumes the objective function should be minimized and will return minmax ¼ �1.
If the function discovers in the OBJSENSE section that the objective function should be
maximized it will return minmax ¼ 1. If the function discovers that there is neither the linear
objective term c (the objective row) nor the Hessian matrix H, the problem is considered as a
feasible point problem and minmax ¼ 0 is returned.

If nag_opt_miqp_mps_read (e04mxc) was run in query mode (see Section 3.2), or returned with
fail:code ¼ NE_INT_MAX, minmax is not set. In the former case you may pass NULL instead.

28: intvar½dim� – Integer Output

Note: the dimension, dim, of the array intvar must be at least maxlintvar, when maxlintvar > 0.

On exit: if maxlintvar > 0 on entry, intvar contains pointers to the columns that are defined as
integer variables. More precisely, intvar½i � 1� ¼ k, where k is the index of a column that is
defined as an integer variable, for i ¼ 1; 2; . . . ; lintvar.

If maxlintvar � 0 on entry, or nag_opt_miqp_mps_read (e04mxc) was run in query mode (see
Section 3.2), or it returned with fail:code ¼ NE_INT_MAX, intvar is not set. Excepting the latter
case you may pass NULL as this argument instead.

29: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Note that if any of the relevant arguments are accidentally set to zero, or not set and assume zero
values, then the function will have executed in query mode. In this case only the size of the
problem is returned and other arguments are not set. See Section 3.2.

e04mxc NAG Library Manual

e04mxc.10 Mark 25



6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FILEID

On entry, fileid ¼ valueh i.
Constraint: fileid � 0.

NE_INT_MAX

At least one of maxm, maxn, maxnnz, maxnnzh, maxncolh or maxlintvar is too small.
Suggested values are returned in m, n, nnz, nnzh, ncolh and lintvar respectively.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_MPS_BOUNDS

The supplied name, in pnames½4�, of the BOUNDS set to be used was not found in the BOUNDS
section.

Unknown bound type ‘ valueh i’ in BOUNDS section.

NE_MPS_COLUMNS

Column ‘ valueh i’ has been defined more than once in the COLUMNS section. Column definitions
must be continuous. (See Section 3.1.5).

Unknown column name ‘ valueh i’ in valueh i section.
All column names must be specified in the COLUMNS section.

NE_MPS_ENDATA_NOT_FOUND

End of file found before ENDATA indicator line.

NE_MPS_FORMAT

Warning: MPS file not strictly fixed format, although the problem was read anyway. The data may
have been read incorrectly. You should set mpslst ¼ 1 and repeat the call to
nag_opt_miqp_mps_read (e04mxc) for more details.

NE_MPS_ILLEGAL_DATA_LINE

An illegal line was detected in ‘ valueh i’ section.
This is neither a comment nor a valid data line.

NE_MPS_ILLEGAL_NUMBER

Field valueh i did not contain a number (see Section 3).

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.11



NE_MPS_INDICATOR

Incorrect ordering of indicator lines.
BOUNDS indicator line found before COLUMNS indicator line.

Incorrect ordering of indicator lines.
COLUMNS indicator line found before ROWS indicator line.

Incorrect ordering of indicator lines.
OBJNAME indicator line found after ROWS indicator line.

Incorrect ordering of indicator lines.
QUADOBJ indicator line found before BOUNDS indicator line.

Incorrect ordering of indicator lines.
QUADOBJ indicator line found before COLUMNS indicator line.

Incorrect ordering of indicator lines.
RANGES indicator line found before RHS indicator line.

Incorrect ordering of indicator lines.
RHS indicator line found before COLUMNS indicator line.

Indicator line ‘ valueh i’ has been found more than once in the MPS file.

No indicator line found in file. It may be an empty file.

Unknown indicator line ‘ valueh i’.

NE_MPS_INVALID_INTORG_INTEND

Found ‘INTEND’ marker without previous marker being ‘INTORG’.

Found ‘INTORG’ but not ‘INTEND’ before the end of the COLUMNS section.

Found ‘INTORG’ marker within ‘INTORG’ to ‘INTEND’ range.

Illegal marker type ‘ valueh i’.
Should be either ‘INTORG’ or ‘INTEND’.

NE_MPS_MANDATORY

At least one mandatory section not found in MPS file.

NE_MPS_OBJNAME

The supplied name, in pnames½1� or in OBJNAME, of the objective row was not found among the
free rows in the ROWS section.

NE_MPS_PRINTABLE

Illegal column name.
Column names must consist of printable characters only.

Illegal row name.
Row names must consist of printable characters only.

NE_MPS_RANGES

The supplied name, in pnames½3�, of the RANGES set to be used was not found in the RANGES
section.

NE_MPS_REPEAT_COLUMN

More than one nonzero of a has row name ‘ valueh i’ and column name ‘ valueh i’ in the
COLUMNS section.

e04mxc NAG Library Manual

e04mxc.12 Mark 25



NE_MPS_REPEAT_ROW

Row name ‘ valueh i’ has been defined more than once in the ROWS section.

NE_MPS_RHS

The supplied name, in pnames½2�, of the RHS set to be used was not found in the RHS section.

NE_MPS_ROWS

Unknown inequality key ‘ valueh i’ in ROWS section.
Expected ‘N’, ‘G’, ‘L’ or ‘E’.

Unknown row name ‘ valueh i’ in valueh i section.
All row names must be specified in the ROWS section.

NE_MPS_ROWS_OR_CONS

Empty ROWS section.
Neither the objective row nor the constraints were defined.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_opt_miqp_mps_read (e04mxc) is not threaded by NAG in any implementation.

nag_opt_miqp_mps_read (e04mxc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example solves the quadratic programming problem

minimize cTxþ 1
2x

THx subject to l � Ax � u;
�2 � x � 2;

where

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.13



c ¼

�4:0
�1:0
�1:0
�1:0
�1:0
�1:0
�1:0
�0:1
�0:3

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; H ¼

2 1 1 1 1 0 0 0 0
1 2 1 1 1 0 0 0 0
1 1 2 1 1 0 0 0 0
1 1 1 2 1 0 0 0 0
1 1 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

A ¼
1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 4:0
1:0 2:0 3:0 4:0 �2:0 1:0 1:0 1:0 1:0
1:0 �1:0 1:0 �1:0 1:0 1:0 1:0 1:0 1:0

0
@

1
A;

l ¼
�2:0
�2:0
�2:0

0
@

1
A and u ¼

1:5
1:5
4:0

0
@

1
A:

The optimal solution (to five figures) is

x� ¼ 2:0;�0:23333;�0:26667;�0:3;�0:1; 2:0; 2:0;�1:7777;�0:45555ð ÞT:
Three bound constraints and two general linear constraints are active at the solution. Note that, although
the Hessian matrix is only positive semidefinite, the point x� is unique.

The MPS representation of the problem is given in Section 10.2.

10.1 Program Text

/* nag_opt_miqp_mps_read (e04mxc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <stdio.h>
#include <string.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C" {
#endif

static void NAG_CALL qphx(Integer ncolh, const double x[], double hx[],
Integer nstate, Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

/* Make a typedef for convenience when allocating crname. */
typedef char e04mx_name[9];

int main(void)
{

Integer exit_status = 0;
double obj, objadd, sinf;
Integer i, iobj, j, lenc, lintvar, m, maxlintvar, maxm, maxn, maxncolh,

maxnnz, maxnnzh, minmax, n, ncolh, ninf, nname, nnz, nnzh, ns;
Integer mpslst = 1;
double *a = 0, *bl = 0, *bu = 0, *h = 0, *pi = 0, *rc = 0, *ruser = 0, *x = 0;

e04mxc NAG Library Manual

e04mxc.14 Mark 25



Integer *helast = 0, *hs = 0, *iccola = 0, *iccolh = 0, *intvar = 0,
*irowa = 0, *irowh = 0, *iuser = 0;

char pnames[5][9] = {"", "", "", "", ""};
char (*crname)[9] = 0;
char **names = 0;
char fname[] = "e04mxce.opt";

/* Nag Types */
Nag_Boolean readints = Nag_FALSE;
Nag_E04State state;
NagError fail;
Nag_Comm comm;
Nag_FileID fileid;

INIT_FAIL(fail);

printf("nag_opt_miqp_mps_read (e04mxc) Example Program Results\n");
fflush(stdout);

/* nag_open_file (x04acc).
Open unit number for reading and associate unit with named file. */

nag_open_file(fname, 0, &fileid, NAGERR_DEFAULT);

/* nag_opt_miqp_mps_read (e04mxc).
Reads MPS data file defining LP, QP, MILP or MIQP problem.
Query call. */

nag_opt_miqp_mps_read(fileid, 0, 0, 0, 0, 0, 0, mpslst, &n, &m, &nnz, &ncolh,
&nnzh, &lintvar, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NAGERR_DEFAULT);

/* nag_close_file (x04adc).
Close file associated with given unit number. */

nag_close_file(fileid, NAGERR_DEFAULT);

maxm = m;
maxn = n;
maxnnz = nnz;
maxnnzh = nnzh;
maxncolh = ncolh;
maxlintvar = (readints && lintvar > 0) ? lintvar : -1;

if (!(irowa = NAG_ALLOC(maxnnz, Integer)) ||
!(iccola = NAG_ALLOC(maxn + 1, Integer)) ||
!(a = NAG_ALLOC(maxnnz, double)) ||
!(bl = NAG_ALLOC(maxn + maxm, double)) ||
!(bu = NAG_ALLOC(maxn + maxm, double)) ||
!(irowh = NAG_ALLOC(maxnnzh, Integer)) ||
!(iccolh = NAG_ALLOC(maxncolh + 1, Integer)) ||
!(h = NAG_ALLOC(maxnnzh, double)) ||
(maxlintvar > 0 && !(intvar = NAG_ALLOC(maxlintvar, Integer))) ||
!(crname = NAG_ALLOC(maxn + maxm, e04mx_name)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

nag_open_file(fname, 0, &fileid, NAGERR_DEFAULT);

/* Full call to the reader. */
nag_opt_miqp_mps_read(fileid, maxn, maxm, maxnnz, maxncolh, maxnnzh,

maxlintvar, mpslst, &n, &m, &nnz, &ncolh, &nnzh,
&lintvar, &iobj, a, irowa, iccola, bl, bu, pnames,
&nname, crname, h, irowh, iccolh, &minmax,
(maxlintvar > 0) ? intvar : NULL, NAGERR_DEFAULT);

nag_close_file(fileid, NAGERR_DEFAULT);

/* Data has been read. Set up and run the solver.
We have no explicit objective vector so set lenc = 0; the

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.15



objective vector is stored in row iobj of a. */
lenc = 0;
objadd = 0.0;

if (!(helast = NAG_ALLOC(n + m, Integer)) ||
!(x = NAG_ALLOC(n + m, double)) ||
!(pi = NAG_ALLOC(m, double)) ||
!(rc = NAG_ALLOC(n + m, double)) ||
!(hs = NAG_ALLOC(n + m, Integer)) ||
!(iuser = NAG_ALLOC(ncolh + 1 + nnzh, Integer)) ||
!(ruser = NAG_ALLOC(nnzh, double)) ||
!(names = NAG_ALLOC(n + m, char *)))

{
printf("Allocation failure\n");
exit_status = -3;
goto END;

}

/* Transform char (*crname)[9] to char *names[] to be compatible with the
solver. */

for (i = 0; i < n + m; i++)
names[i] = crname[i];

for (i = 0; i < n + m; i++)
helast[i] = 0;

for (i = 0; i < n + m; i++)
hs[i] = 0;

for (i = 0; i < n + m; i++)
x[i] = MIN(MAX(0.0, bl[i]), bu[i]);

if (ncolh > 0)
{

/* Store the nonzeros of H in ruser for use by qphx. */
for (i = 0; i < nnzh; i++)

ruser[i] = h[i];
/* Store iccolh and irowh in iuser for use by qphx. */
for (i = 0; i < ncolh + 1; i++)

iuser[i] = iccolh[i];
for (i = ncolh + 1, j = 0; i < nnzh+ncolh+1; i++, j++)

iuser[i] = irowh[j];
comm.iuser = iuser;
comm.user = ruser;

}

/* nag_opt_sparse_convex_qp_init (e04npc).
Initialization function for nag_opt_sparse_convex_qp_solve (e04nqc). */

nag_opt_sparse_convex_qp_init(&state, NAGERR_DEFAULT);

/* Use nag_opt_sparse_convex_qp_option_set_string (e04nsc) to change
the direction of optimization. Minimization is assumed by default. */

if (minmax == 1)
nag_opt_sparse_convex_qp_option_set_string("Maximize", &state,

NAGERR_DEFAULT);
else if (minmax == 0)

nag_opt_sparse_convex_qp_option_set_string("Feasible Point", &state,
NAGERR_DEFAULT);

/* By default nag_opt_sparse_convex_qp_solve (e04nqc) does not print
monitoring information. Call nag_open_file (x04acc) to set the print
file fileid and then call
nag_opt_sparse_convex_qp_option_set_integer (e04ntc) to register that
setting with the solver. */

nag_open_file("", 2, &fileid, NAGERR_DEFAULT);
nag_opt_sparse_convex_qp_option_set_integer("Print file", fileid, &state,

NAGERR_DEFAULT);

/* nag_opt_sparse_convex_qp_solve (e04nqc).
LP or QP problem (suitable for sparse problems). */

nag_opt_sparse_convex_qp_solve(Nag_Cold, qphx, m, n, nnz, nname, lenc,
ncolh, iobj, objadd, pnames[0], a, irowa,
iccola, bl, bu, NULL, (const char**)names,

e04mxc NAG Library Manual

e04mxc.16 Mark 25



helast, hs, x, pi, rc, &ns, &ninf, &sinf,
&obj, &state, &comm, &fail);

END:
NAG_FREE(a);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(h);
NAG_FREE(pi);
NAG_FREE(rc);
NAG_FREE(ruser);
NAG_FREE(x);
NAG_FREE(helast);
NAG_FREE(hs);
NAG_FREE(iccola);
NAG_FREE(iccolh);
NAG_FREE(intvar);
NAG_FREE(irowa);
NAG_FREE(irowh);
NAG_FREE(iuser);
NAG_FREE(crname);
NAG_FREE(names);
return exit_status;

}

static void NAG_CALL qphx(Integer ncolh, const double x[], double hx[],
Integer nstate, Nag_Comm *comm)

{
/* Function to compute H*x.

Note: comm->iuser and comm->user contain the following data:
comm->user[0:nnzh-1] = h[0:nnzh-1]
comm->iuser[0:ncolh] = iccolh[0:ncolh]
comm->iuser[ncolh+1:nnzh+ncolh] = irowh[0:nnzh-1] */

Integer i, end, icol, idx, irow, start;

for (i = 0; i < ncolh; i++)
hx[i] = 0.0;

for (icol = 0; icol < ncolh; icol++)
{

start = comm->iuser[icol];
end = comm->iuser[icol + 1] - 1;
for (idx = start-1; idx < end; idx++)

{
irow = comm->iuser[ncolh + 1 + idx] - 1;
hx[irow] = hx[irow] + x[icol] * comm->user[idx];
if (irow != icol)

hx[icol] = hx[icol] + x[irow] * comm->user[idx];
}

}
}

10.2 Program Data

NAME E04MX.EX
ROWS
L ..ROW1..
L ..ROW2..
L ..ROW3..
N ..COST..

COLUMNS
...X1... ..ROW1.. 1.0 ..ROW2.. 1.0
...X1... ..ROW3.. 1.0 ..COST.. -4.0
...X2... ..ROW1.. 1.0 ..ROW2.. 2.0
...X2... ..ROW3.. -1.0 ..COST.. -1.0
...X3... ..ROW1.. 1.0 ..ROW2.. 3.0
...X3... ..ROW3.. 1.0 ..COST.. -1.0
...X4... ..ROW1.. 1.0 ..ROW2.. 4.0
...X4... ..ROW3.. -1.0 ..COST.. -1.0
...X5... ..ROW1.. 1.0 ..ROW2.. -2.0

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.17



...X5... ..ROW3.. 1.0 ..COST.. -1.0

...X6... ..ROW1.. 1.0 ..ROW2.. 1.0

...X6... ..ROW3.. 1.0 ..COST.. -1.0

...X7... ..ROW1.. 1.0 ..ROW2.. 1.0

...X7... ..ROW3.. 1.0 ..COST.. -1.0

...X8... ..ROW1.. 1.0 ..ROW2.. 1.0

...X8... ..ROW3.. 1.0 ..COST.. -0.1

...X9... ..ROW1.. 4.0 ..ROW2.. 1.0

...X9... ..ROW3.. 1.0 ..COST.. -0.3
RHS

RHS1 ..ROW1.. 1.5
RHS1 ..ROW2.. 1.5
RHS1 ..ROW3.. 4.0
RHS1 ..COST.. 1000.0

RANGES
RANGE1 ..ROW1.. 3.5
RANGE1 ..ROW2.. 3.5
RANGE1 ..ROW3.. 6.0

BOUNDS
LO BOUND ...X1... -2.0
LO BOUND ...X2... -2.0
LO BOUND ...X3... -2.0
LO BOUND ...X4... -2.0
LO BOUND ...X5... -2.0
LO BOUND ...X6... -2.0
LO BOUND ...X7... -2.0
LO BOUND ...X8... -2.0
LO BOUND ...X9... -2.0
UP BOUND ...X1... 2.0
UP BOUND ...X2... 2.0
UP BOUND ...X3... 2.0
UP BOUND ...X4... 2.0
UP BOUND ...X5... 2.0
UP BOUND ...X6... 2.0
UP BOUND ...X7... 2.0
UP BOUND ...X8... 2.0
UP BOUND ...X9... 2.0

QUADOBJ
...X1... ...X1... 2.00000000E0 ...X2... 1.00000000E0
...X1... ...X3... 1.00000000E0 ...X4... 1.00000000E0
...X1... ...X5... 1.00000000E0
...X2... ...X2... 2.00000000E0 ...X3... 1.00000000E0
...X2... ...X4... 1.00000000E0 ...X5... 1.00000000E0
...X3... ...X3... 2.00000000E0 ...X4... 1.00000000E0
...X3... ...X5... 1.00000000E0
...X4... ...X4... 2.00000000E0 ...X5... 1.00000000E0
...X5... ...X5... 2.00000000E0

ENDATA

10.3 Program Results

nag_opt_miqp_mps_read (e04mxc) Example Program Results

MPSX INPUT LISTING

------------------

Searching for indicator line

Line 1: Found NAME indicator line

Query mode - Ignoring NAME data.

Line 2: Found ROWS indicator line

Query mode - Counting ROWS data.

Line 7: Found COLUMNS indicator line

Query mode - Counting COLUMNS data.

Line 26: Found RHS indicator line

Query mode - Ignoring RHS data.

Line 31: Found RANGES indicator line

Query mode - Ignoring RANGES data.

Line 35: Found BOUNDS indicator line

Query mode - Counting BOUNDS data.

Line 54: Found QUADOBJ indicator line

Query mode - Counting QUADOBJ data.

e04mxc NAG Library Manual

e04mxc.18 Mark 25



Query mode - End of QUADOBJ data. Exit

MPSX INPUT LISTING

------------------

Searching for indicator line

Line 1: Found NAME indicator line

Line 2: Found ROWS indicator line

Line 7: Found COLUMNS indicator line

Line 26: Found RHS indicator line

Line 31: Found RANGES indicator line

Line 35: Found BOUNDS indicator line

Line 54: Found QUADOBJ indicator line

Line 64: Found ENDATA indicator line

Parameters

==========

Files

-----

Solution file.......... 0 Old basis file ........ 0 (Print file)........... 6

Insert file............ 0 New basis file ........ 0 (Summary file)......... 0

Punch file............. 0 Backup basis file...... 0

Load file.............. 0 Dump file.............. 0

Frequencies

-----------

Print frequency........ 100 Check frequency........ 60 Save new basis map..... 100

Summary frequency...... 100 Factorization frequency 50 Expand frequency....... 10000

LP/QP Parameters

----------------

Minimize............... QPsolver Cholesky...... Cold start.............

Scale tolerance........ 0.900 Feasibility tolerance.. 1.00E-06 Iteration limit........ 10000

Scale option........... 2 Optimality tolerance... 1.00E-06 Print level............ 1

Crash tolerance........ 0.100 Pivot tolerance........ 2.04E-11 Partial price.......... 1

Crash option........... 3 Elastic weight......... 1.00E+00 Prtl price section ( A) 9

Elastic mode........... 1 Elastic objective...... 1 Prtl price section (-I) 4

QP objective

------------

Objective variables.... 5 Hessian columns........ 5 Superbasics limit...... 6

Nonlin Objective vars.. 5 Unbounded step size.... 1.00E+20

Linear Objective vars.. 0

Miscellaneous

-------------

LU factor tolerance.... 3.99 LU singularity tol..... 2.04E-11 Timing level........... 0

LU update tolerance.... 3.99 LU swap tolerance...... 1.03E-04 Debug level............ 0

LU partial pivoting... eps (machine precision) 1.11E-16 System information..... No

Matrix statistics

-----------------

Total Normal Free Fixed Bounded

Rows 4 0 1 0 3

Columns 9 0 0 0 9

No. of matrix elements 36 Density 100.000

Biggest 4.0000E+00 (excluding fixed columns,

Smallest 1.0000E+00 free rows, and RHS)

No. of objective coefficients 9

Biggest 4.0000E+00 (excluding fixed columns)

Smallest 1.0000E-01

Nonlinear constraints 0 Linear constraints 4

Nonlinear variables 5 Linear variables 4

Jacobian variables 0 Objective variables 5

Total constraints 4 Total variables 9

e04 – Minimizing or Maximizing a Function e04mxc

Mark 25 e04mxc.19



Itn 0: Feasible linear constraints

E04NQT EXIT 0 -- finished successfully

E04NQT INFO 1 -- optimality conditions satisfied

Problem name E04MX.EX

No. of iterations 11 Objective value -8.0677777778E+00

No. of Hessian products 25 Objective row -1.0785555556E+01

Quadratic objective 2.7177777778E+00

No. of superbasics 4 No. of basic nonlinears 2

No. of degenerate steps 2 Percentage 18.18

Max x (scaled) 1 1.3E+00 Max pi (scaled) 4 1.0E+00

Max x 1 2.0E+00 Max pi 4 1.0E+00

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 0 0.0E+00

Max Primal infeas 0 0.0E+00 Max Dual infeas 0 0.0E+00

Name E04MX.EX Objective Value -8.0677777778E+00

Status Optimal Soln Iteration 11 Superbasics 4

Section 1 - Rows

Number ...Row.. State ...Activity... Slack Activity ..Lower Limit. ..Upper Limit. .Dual Activity ..i

10 ..ROW1.. UL 1.50000 . -2.00000 1.50000 -0.06667 1

11 ..ROW2.. UL 1.50000 . -2.00000 1.50000 -0.03333 2

12 ..ROW3.. SBS 3.93333 -0.06667 -2.00000 4.00000 . 3

13 ..COST.. BS -10.78556 -10.78556 None None -1.0 4

Section 2 - Columns

Number .Column. State ...Activity... .Obj Gradient. ..Lower Limit. ..Upper Limit. Reduced Gradnt m+j

1 ...X1... UL 2.00000 -0.90000 -2.00000 2.00000 -0.80000 5

2 ...X2... SBS -0.23333 -0.13333 -2.00000 2.00000 . 6

3 ...X3... BS -0.26667 -0.16667 -2.00000 2.00000 . 7

4 ...X4... BS -0.30000 -0.20000 -2.00000 2.00000 . 8

5 ...X5... SBS -0.10000 . -2.00000 2.00000 . 9

6 ...X6... UL 2.00000 -1.0 -2.00000 2.00000 -0.90000 10

7 ...X7... UL 2.00000 -1.0 -2.00000 2.00000 -0.90000 11

8 ...X8... SBS -1.77778 -0.10000 -2.00000 2.00000 . 12

9 ...X9... BS -0.45556 -0.30000 -2.00000 2.00000 . 13

e04mxc NAG Library Manual

e04mxc.20 (last) Mark 25


	e04mxc
	1 Purpose
	2 Specification
	3 Description
	3.1 MPS input format
	3.1.1 NAME Section (optional)
	3.1.2 OBJSENSE Section (optional)
	3.1.3 OBJNAME Section (optional)
	3.1.4 ROWS Section
	3.1.5 COLUMNS Section
	3.1.5.1 Integer Markers

	3.1.6 RHS Section
	3.1.7 RANGES Section (optional)
	3.1.8 BOUNDS Section (optional)
	3.1.9 QUADOBJ Section (optional)

	3.2 Query Mode

	4 References
	IBM (1971)

	5 Arguments
	fileid
	maxn
	maxm
	maxnnz
	maxncolh
	maxnnzh
	maxlintvar
	mpslst
	n
	m
	nnz
	ncolh
	nnzh
	lintvar
	iobj
	a
	irowa
	iccola
	bl
	bu
	pnames
	nname
	crname
	h
	irowh
	iccolh
	minmax
	intvar
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_FILEID
	NE_INT_MAX
	NE_INTERNAL_ERROR
	NE_MPS_BOUNDS
	NE_MPS_COLUMNS
	NE_MPS_ENDATA_NOT_FOUND
	NE_MPS_FORMAT
	NE_MPS_ILLEGAL_DATA_LINE
	NE_MPS_ILLEGAL_NUMBER
	NE_MPS_INDICATOR
	NE_MPS_INVALID_INTORG_INTEND
	NE_MPS_MANDATORY
	NE_MPS_OBJNAME
	NE_MPS_PRINTABLE
	NE_MPS_RANGES
	NE_MPS_REPEAT_COLUMN
	NE_MPS_REPEAT_ROW
	NE_MPS_RHS
	NE_MPS_ROWS
	NE_MPS_ROWS_OR_CONS
	NE_NO_LICENCE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction




