
NAG Library Function Document

nag_quad_md_sphere (d01fdc)

1 Purpose

nag_quad_md_sphere (d01fdc) calculates an approximation to a definite integral in up to 30 dimensions,
using the method of Sag and Szekeres (see Sag and Szekeres (1964)). The region of integration is an
n-sphere, or by built-in transformation via the unit n-cube, any product region.

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_quad_md_sphere (Integer ndim,

double (*f)(Integer ndim, const double x[], Nag_Comm *comm),

double sigma,

void (*region)(Integer ndim, const double x[], Integer j, double *c,
double *d, Nag_Comm *comm),

Integer limit, double r0, double u, double *result, Integer *ncalls,
Nag_Comm *comm, NagError *fail)

3 Description

nag_quad_md_sphere (d01fdc) calculates an approximation toZ

n-sphere of radius �

f x1; x2; . . . ; xnð Þdx1dx2 � � � dxn ð1Þ

or, more generally,
Z d1

c1

dx1 � � �
Z dn

cn

dxnf x1; . . . ; xnð Þ ð2Þ

where each ci and di may be functions of xj j < ið Þ.
The function uses the method of Sag and Szekeres (1964), which exploits a property of the shifted
p-point trapezoidal rule, namely, that it integrates exactly all polynomials of degree < p (see Krylov
(1962)). An attempt is made to induce periodicity in the integrand by making a parameterised
transformation to the unit n-sphere. The Jacobian of the transformation and all its direct derivatives
vanish rapidly towards the surface of the unit n-sphere, so that, except for functions which have strong
singularities on the boundary, the resulting integrand will be pseudo-periodic. In addition, the variation
in the integrand can be considerably reduced, causing the trapezoidal rule to perform well.

Integrals of the form (1) are transformed to the unit n-sphere by the change of variables:

xi ¼ yi
�

r
tanh

ur

1� r2

� �

where r2 ¼
Xn
i¼1

y2
i and u is an adjustable parameter.

Integrals of the form (2) are first of all transformed to the n-cube �1; 1½ �n by a linear change of variables

xi ¼ di þ cið Þ þ di � cið Þyið Þ=2

and then to the unit sphere by a further change of variables

d01 – Quadrature d01fdc

Mark 25 d01fdc.1

yi ¼ tanh
uzi

1� r

� �

where r2 ¼
Xn
i¼1

z2
i and u is again an adjustable parameter.

The parameter u in these transformations determines how the transformed integrand is distributed
between the origin and the surface of the unit n-sphere. A typical value of u is 1:5. For larger u, the
integrand is concentrated toward the centre of the unit n-sphere, while for smaller u it is concentrated
toward the perimeter.

In performing the integration over the unit n-sphere by the trapezoidal rule, a displaced equidistant grid
of size h is constructed. The points of the mesh lie on concentric layers of radius

ri ¼
h

4

ffi
nþ 8 i� 1ð Þ

p
; i ¼ 1; 2; 3; . . . :

The function requires you to specify an approximate maximum number of points to be used, and then
computes the largest number of whole layers to be used, subject to an upper limit of 400 layers.

In practice, the rapidly-decreasing Jacobian makes it unnecessary to include the whole unit n-sphere and
the integration region is limited by a user-specified cut-off radius r0 < 1. The grid-spacing h is
determined by r0 and the number of layers to be used. A typical value of r0 is 0:8.

Some experimentation may be required with the choice of r0 (which determines how much of the unit
n-sphere is included) and u (which determines how the transformed integrand is distributed between the
origin and surface of the unit n-sphere), to obtain best results for particular families of integrals. This
matter is discussed further in Section 9.

4 References

Krylov V I (1962) Approximate Calculation of Integrals (trans A H Stroud) Macmillan

Sag T W and Szekeres G (1964) Numerical evaluation of high-dimensional integrals Math. Comput. 18
245–253

5 Arguments

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

Constraint: 1 � ndim � 30.

2: f – function, supplied by the user External Function

f must return the value of the integrand f at a given point.

The specification of f is:

double f (Integer ndim, const double x[], Nag_Comm *comm)

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

2: x½ndim� – const double Input

On entry: the coordinates of the point at which the integrand f must be evaluated.

3: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to f.

d01fdc NAG Library Manual

d01fdc.2 Mark 25

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_sphere (d01fdc)
you may allocate memory and initialize these pointers with various quantities for
use by f when called from nag_quad_md_sphere (d01fdc) (see Section 3.2.1.1 in
the Essential Introduction).

3: sigma – double Input

On entry: indicates the region of integration.

sigma � 0:0
The integration is carried out over the n-sphere of radius sigma, centred at the origin.

sigma < 0:0
The integration is carried out over the product region described by region.

4: region – function, supplied by the user External Function

If sigma < 0:0, region must evaluate the limits of integration in any dimension.

The specification of region is:

void region (Integer ndim, const double x[], Integer j, double *c,
double *d, Nag_Comm *comm)

1: ndim – Integer Input

On entry: n, the number of dimensions of the integral.

2: x½ndim� – const double Input

On entry: x½0�; . . . ; x½j� 2� contain the current values of the first j� 1ð Þ variables, which
may be used if necessary in calculating cj and dj.

3: j – Integer Input

On entry: the index j for which the limits of the range of integration are required.

4: c – double * Output

On exit: the lower limit cj of the range of xj.

5: d – double * Output

On exit: the upper limit dj of the range of xj.

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to region.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_quad_md_sphere (d01fdc)
you may allocate memory and initialize these pointers with various quantities for
use by region when called from nag_quad_md_sphere (d01fdc) (see
Section 3.2.1.1 in the Essential Introduction).

If sigma � 0:0, region is not called by nag_quad_md_sphere (d01fdc), but the NAG defined null
function pointer NULLFN must be supplied.

d01 – Quadrature d01fdc

Mark 25 d01fdc.3

5: limit – Integer Input

On entry: the approximate maximum number of integrand evaluations to be used.

Constraint: limit � 100.

6: r0 – double Input

On entry: the cut-off radius on the unit n-sphere, which may be regarded as an adjustable
parameter of the method.

Suggested value: a typical value is r0 ¼ 0:8. (See also Section 9.)

Constraint: 0:0 < r0 < 1:0.

7: u – double Input

On entry: must specify an adjustable parameter of the transformation to the unit n-sphere.

Suggested value: a typical value is u ¼ 1:5. (See also Section 9.)

Constraint: u > 0:0.

8: result – double * Output

On exit: the approximation to the integral I.

9: ncalls – Integer * Output

On exit: the actual number of integrand evaluations used. (See also Section 9.)

10: comm – Nag_Comm *

The NAG communication argument (see Section 3.2.1.1 in the Essential Introduction).

11: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, limit ¼ valueh i.
Constraint: limit � 100.

On entry, ndim ¼ valueh i.
Constraint: ndim � 30.

On entry, ndim ¼ valueh i.
Constraint: ndim � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

d01fdc NAG Library Manual

d01fdc.4 Mark 25

An unexpected error has been triggered by this function. Please contact NAG.
See Section 3.6.6 in the Essential Introduction for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

NE_REAL

On entry, r0 ¼ valueh i.
Constraint: r0 < 1:0.

On entry, r0 ¼ valueh i.
Constraint: r0 > 0:0.

On entry, u ¼ valueh i.
Constraint: u > 0:0.

7 Accuracy

No error estimate is returned, but results may be verified by repeating with an increased value of limit
(provided that this causes an increase in the returned value of ncalls).

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by nag_quad_md_sphere (d01fdc) will be approximately proportional to the returned
value of ncalls, which, except in the circumstances outlined in (b) below, will be close to the given value
of limit.

(a) Choice of r0 and u

If the chosen combination of r0 and u is too large in relation to the machine accuracy it is possible
that some of the points generated in the original region of integration may transform into points in
the unit n-sphere which lie too close to the boundary surface to be distinguished from it to machine
accuracy (despite the fact that r0 < 1). To be specific, the combination of r0 and u is too large if

ur0

1� r2
0

> 0:3465 t� 1ð Þ; if sigma � 0:0;

or

ur0

1� r0
> 0:3465 t� 1ð Þ; if sigma < 0:0;

where t is the number of bits in the mantissa of a double number.

The contribution of such points to the integral is neglected. This may be justified by appeal to the
fact that the Jacobian of the transformation rapidly approaches zero towards the surface. Neglect of
these points avoids the occurrence of overflow with integrands which are infinite on the boundary.

(b) Values of limit and ncalls

limit is an approximate upper limit to the number of integrand evaluations, and may not be chosen
less than 100. There are two circumstances when the returned value of ncalls (the actual number of
evaluations used) may be significantly less than limit.

Firstly, as explained in (a), an unsuitably large combination of r0 and u may result in some of the
points being unusable. Such points are not included in the returned value of ncalls.

d01 – Quadrature d01fdc

Mark 25 d01fdc.5

Secondly, no more than 400 layers will ever be used, no matter how high limit is set. This places an
effective upper limit on ncalls as follows:

n ¼ 1 : 56
n ¼ 2 : 1252
n ¼ 3 : 23690
n ¼ 4 : 394528
n ¼ 5 : 5956906

10 Example

This example calculates the integral Z Z Z
s

dx1dx2dx3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � r2
p ¼ 22:2066

where s is the 3-sphere of radius �, r2 ¼ x2
1 þ x2

2 þ x2
3 and � ¼ 1:5. Both sphere-to-sphere and general

product region transformations are used. For the former, we use r0 ¼ 0:9 and u ¼ 1:5; for the latter,
r0 ¼ 0:8 and u ¼ 1:5.

10.1 Program Text

/* nag_quad_md_sphere (d01fdc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd01.h>

#ifdef __cplusplus
extern "C" {
#endif

static double NAG_CALL f(Integer ndim, const double x[], Nag_Comm *comm);
static void NAG_CALL region(Integer ndim, const double x[], Integer j,

double *c, double *d, Nag_Comm *comm);
#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[2] = {-1.0, -1.0};
Integer exit_status = 0;
double r0, result, sigma, u;
Integer i, limit, ncalls, ndim;
Nag_Comm comm;
NagError fail;

INIT_FAIL(fail);

printf("nag_quad_md_sphere (d01fdc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif
#ifdef _WIN32

d01fdc NAG Library Manual

d01fdc.6 Mark 25

scanf_s("%"NAG_IFMT"", &ndim);
#else

scanf("%"NAG_IFMT"", &ndim);
#endif
#ifdef _WIN32

scanf_s("%"NAG_IFMT"", &limit);
#else

scanf("%"NAG_IFMT"", &limit);
#endif
#ifdef _WIN32

scanf_s("%lf %*[^\n] ", &u);
#else

scanf("%lf %*[^\n] ", &u);
#endif

for (i = 1; i <= 2; i++)
{

/* nag_quad_md_sphere (d01fdc).
* Multidimensional quadrature, Sag-Szekeres method,
* general product region or n-sphere.
*/

switch (i)
{
case 1:

printf("\nSphere-to-sphere transformation\n");
sigma = 1.5;
r0 = 0.9;
nag_quad_md_sphere(ndim, f, sigma, NULLFN, limit, r0, u, &result,

&ncalls, &comm, &fail);
break;

case 2:
printf("\nProduct region transformation\n");
sigma = -1.0;
r0 = 0.8;
nag_quad_md_sphere(ndim, f, sigma, region, limit, r0, u, &result,

&ncalls, &comm, &fail);
break;

}
if (fail.code != NE_NOERROR)

{
printf("Error from nag_quad_md_sphere (d01fdc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\nEstimated value of the integral = %9.3f"
"\nNumber of integrand evaluations = %4"NAG_IFMT"\n",
result, ncalls);

}

END:
return exit_status;

}

static double NAG_CALL f(Integer ndim, const double x[], Nag_Comm *comm)
{

Integer i;
double x_sq = 0.0;

if (comm->user[0] == -1.0)
{

printf("(User-supplied callback f, first invocation.)\n");
comm->user[0] = 0.0;

}

for (i = 0; i < ndim; i++) x_sq += pow(x[i], 2.0);

return 1.0/sqrt(fabs(pow(1.5, 2) - x_sq));
}

d01 – Quadrature d01fdc

Mark 25 d01fdc.7

static void NAG_CALL region(Integer ndim, const double x[], Integer j,
double *c, double *d, Nag_Comm *comm)

{
Integer i;
double x_sq = 0.0;

if (comm->user[1] == -1.0)
{

printf("(User-supplied callback region, first invocation.)\n");
comm->user[1] = 0.0;

}
if (j > 1)

{
for (i = 0; i < (j - 1); i++) x_sq += pow(x[i], 2.0);
*d = sqrt(fabs(pow(1.5, 2) - x_sq));
*c = -*d;

}
else

{
*c = -1.5;
*d = 1.5;

}
}

10.2 Program Data

None.

10.3 Program Results

nag_quad_md_sphere (d01fdc) Example Program Results

Sphere-to-sphere transformation
(User-supplied callback f, first invocation.)

Estimated value of the integral = 22.168
Number of integrand evaluations = 8026

Product region transformation
(User-supplied callback region, first invocation.)

Estimated value of the integral = 22.137
Number of integrand evaluations = 8026

d01fdc NAG Library Manual

d01fdc.8 (last) Mark 25

	d01fdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Krylov (1962)
	Sag and Szekeres (1964)

	5 Arguments
	ndim
	f
	ndim
	x
	comm
	user
	iuser
	p

	sigma
	region
	ndim
	x
	j
	c
	d
	comm
	user
	iuser
	p

	limit
	r0
	u
	result
	ncalls
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 25
	Copyright Statement
	Introduction
	Essential Introduction
	NAG C Library News, Mark 25
	Multithreaded Functions
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Introduction

	h - Operations Research
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Introduction

