/* nag_zsyrk (f16zuc) Example Program.
*
* Copyright 2014 Numerical Algorithms Group.
*
* Mark 8, 2005.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Complex        alpha, beta;
Integer        adim1, adim2, exit_status, i, j, k, n, pda, pdc;

/* Arrays */
Complex        *a = 0, *c = 0;
char           nag_enum_arg[40];

/* Nag Types */
NagError       fail;
Nag_OrderType  order;
Nag_UploType   uplo;
Nag_TransType  trans;
Nag_MatrixType matrix;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define C(I, J) c[(J-1)*pdc + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define C(I, J) c[(I-1)*pdc + J - 1]
order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

printf("nag_zsyrk (f16zuc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n] ");

/* Read the problem dimensions */
scanf("%ld%ld%*[^\n] ", &n, &k);

/* Read the uplo parameter */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
/* Read the transpose parameter */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac), see above. */
trans = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
/* Read scalar parameters */
scanf(" ( %lf , %lf )%*[^\n] ", &alpha.re, &alpha.im);
scanf(" ( %lf , %lf )%*[^\n] ", &beta.re, &beta.im);

if (trans == Nag_NoTrans)
{
}
else
{
}

#ifdef NAG_COLUMN_MAJOR
#else
#endif
pdc = n;
if (k > 0 && n > 0)
{
/* Allocate memory */
if (!(a = NAG_ALLOC(k*n, Complex)) ||
!(c = NAG_ALLOC(n*n, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else
{
printf("Invalid k or n\n");
exit_status = 1;
return exit_status;
}

/* Input matrix A. */
for (i = 1; i <= adim1; ++i)
{
for (j = 1; j <= adim2; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n] ");
}
/* Input matrix C. */
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++i)
{
for (j = i; j <= n; ++j)
scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
}
scanf("%*[^\n] ");
}
else
{
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= i; ++j)
scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
}
scanf("%*[^\n] ");
}

/* nag_zsyrk (f16zuc).
* Rank k update of complex symmetric matrix.
*
*/
nag_zsyrk(order, uplo, trans, n, k, alpha, a, pda, beta, c, pdc,
&fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_zsyrk (f16zuc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
if (uplo == Nag_Upper)
{
matrix = Nag_UpperMatrix;
}
else
{
matrix = Nag_LowerMatrix;
}
/* Print updated matrix C */
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/
fflush(stdout);
nag_gen_complx_mat_print_comp(order, matrix, Nag_NonUnitDiag, n, n, c,
pdc, Nag_BracketForm, "%6.2f",
"Updated Matrix C", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0,
&fail);
if (fail.code != NE_NOERROR)
{
printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s"
"\n", fail.message);
exit_status = 1;
goto END;
}
END:
NAG_FREE(a);
NAG_FREE(c);

return exit_status;
}