/* nag_zherk (f16zpc) Example Program.
 *
 * Copyright 2014 Numerical Algorithms Group.
 *
 * Mark 8, 2005.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

  /* Scalars */
  double         alpha, beta;
  Integer        adim1, adim2, exit_status, i, j, k, n, pda, pdc;

  /* Arrays */
  Complex        *a = 0, *c = 0;
  char           nag_enum_arg[40];

  /* Nag Types */
  NagError       fail;
  Nag_OrderType  order;
  Nag_UploType   uplo;
  Nag_TransType  trans;
  Nag_MatrixType matrix;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define C(I, J) c[(J-1)*pdc + I - 1]
  order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define C(I, J) c[(I-1)*pdc + J - 1]
  order = Nag_RowMajor;
#endif

  exit_status = 0;
  INIT_FAIL(fail);

  printf("nag_zherk (f16zpc) Example Program Results\n\n");

  /* Skip heading in data file */
  scanf("%*[^\n] ");

  /* Read the problem dimensions */
  scanf("%ld%ld%*[^\n] ", &n, &k);

  /* Read the uplo parameter */
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac).
   * Converts NAG enum member name to value
   */
  uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg);
  /* Read the transpose parameter */
  scanf("%39s%*[^\n] ", nag_enum_arg);
  /* nag_enum_name_to_value (x04nac), see above. */
  trans = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
  /* Read scalar parameters */
  scanf("%lf%lf%*[^\n] ", &alpha, &beta);

  if (trans == Nag_NoTrans)
    {
      adim1 = n;
      adim2 = k;
    }
  else
    {
      adim1 = k;
      adim2 = n;
    }

#ifdef NAG_COLUMN_MAJOR
  pda = adim1;
#else
  pda = adim2;
#endif
  pdc = n;
  if (k > 0 && n > 0)
    {
      /* Allocate memory */
      if (!(a = NAG_ALLOC(k*n, Complex)) ||
          !(c = NAG_ALLOC(n*n, Complex)))
        {
          printf("Allocation failure\n");
          exit_status = -1;
          goto END;
        }
    }
  else
    {
      printf("Invalid k or n\n");
      exit_status = 1;
      return exit_status;
    }

  /* Input matrix A. */
  for (i = 1; i <= adim1; ++i)
    {
      for (j = 1; j <= adim2; ++j)
        scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
      scanf("%*[^\n] ");
    }
  /* Input matrix C. */
  if (uplo == Nag_Upper)
    {
      for (i = 1; i <= n; ++i)
        {
          for (j = i; j <= n; ++j)
            scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
        }
      scanf("%*[^\n] ");
    }
  else
    {
      for (i = 1; i <= n; ++i)
        {
          for (j = 1; j <= i; ++j)
            scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
        }
      scanf("%*[^\n] ");
    }

  /* nag_zherk (f16zpc).
   * Rank k update of complex Hermitian matrix.
   *
   */
  nag_zherk(order, uplo, trans, n, k, alpha, a, pda, beta, c, pdc,
            &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_zherk (f16zpc).\n%s\n", fail.message);
      exit_status = 1;
      goto END;
    }
  if (uplo == Nag_Upper)
    {
      matrix = Nag_UpperMatrix;
    }
  else
    {
      matrix = Nag_LowerMatrix;
    }
  /* Print updated matrix C */
  /* nag_gen_complx_mat_print_comp (x04dbc).
   * Print complex general matrix (comprehensive)
   */
  fflush(stdout);
  nag_gen_complx_mat_print_comp(order, matrix, Nag_NonUnitDiag, n, n, c,
                                pdc, Nag_BracketForm, "%6.2f",
                                "Updated Matrix C", Nag_IntegerLabels,
                                0, Nag_IntegerLabels, 0, 80, 0, 0,
                                &fail);
  if (fail.code != NE_NOERROR)
    {
      printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s"
              "\n", fail.message);
      exit_status = 1;
      goto END;
    }
 END:
  NAG_FREE(a);
  NAG_FREE(c);

  return exit_status;
}