NAG Library Routine Document
 F01EKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F01EKF computes the matrix exponential, sine, cosine, \sinh or cosh, of a real n by n matrix A using the Schur-Parlett algorithm.

2 Specification

```
SUBROUTINE FO1EKF (FUN, N, A, LDA, IMNORM, IFAIL)
INTEGER N, LDA, IFAIL
REAL (KIND=nag_wp) A(LDA,*), IMNORM
CHARACTER(*) FUN
```


3 Description

$f(A)$, where f is either the exponential, sine, cosine, sinh or cosh, is computed using the Schur-Parlett algorithm described in Higham (2008) and Davies and Higham (2003).

4 References

Davies P I and Higham N J (2003) A Schur-Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25(2) 464-485
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: FUN - CHARACTER(*)
Input
On entry: indicates which matrix function will be computed.
$\mathrm{FUN}=$ 'EXP'
The matrix exponential, e^{A}, will be computed.
FUN $=$ 'SIN'
The matrix $\operatorname{sine}, \sin (A)$, will be computed.
$\mathrm{FUN}=$ 'COS'
The matrix cosine, $\cos (A)$, will be computed.
FUN $=$ 'SINH'
The hyperbolic matrix $\operatorname{sine}, \sinh (A)$, will be computed.
FUN $=$ 'COSH'
The hyperbolic matrix $\operatorname{cosine}, \cosh (A)$, will be computed.
Constraint: FUN = 'EXP', 'SIN', 'COS', 'SINH' or 'COSH'.
2: $\mathrm{N}-\mathrm{INTEGER}$
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

3: $\mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Note: the second dimension of the array A must be at least N .
On entry: the n by n matrix A.
On exit: the n by n matrix, $f(A)$.
4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F01EKF is called.

Constraint: $\operatorname{LDA} \geq \max (1, \mathrm{~N})$.
5: \quad IMNORM - REAL (KIND=nag_wp)
Output
On exit: if A has complex eigenvalues, F01EKF will use complex arithmetic to compute the matrix function. The imaginary part is discarded at the end of the computation, because it will theoretically vanish. IMNORM contains the 1 -norm of the imaginary part, which should be used to check that the routine has given a reliable answer.
If A has real eigenvalues, F01EKF uses real arithmetic and $\mathrm{IMNORM}=0$.
6: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
A Taylor series failed to converge.
IFAIL $=2$
An unexpected internal error occurred when evaluating the function at a point. Please contact NAG.
IFAIL $=3$
There was an error whilst reordering the Schur form of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.
IFAIL $=4$
The routine was unable to compute the Schur decomposition of A.
Note: this failure should not occur and suggests that the routine has been called incorrectly.
IFAIL $=5$
An unexpected internal error occurred. Please contact NAG.

IFAIL $=6$
The linear equations to be solved are nearly singular and the Pade approximant used to compute the exponential may have no correct figures.
Note: this failure should not occur and suggests that the routine has been called incorrectly.
IFAIL $=-1$
Input parameter number \langle value〉 is invalid.
IFAIL $=-2$
Input parameter number \langle value \rangle is invalid.
IFAIL $=-4$
On entry, parameter LDA is invalid.
Constraint: LDA $\geq \mathrm{N}$.

IFAIL $=-999$
Allocation of memory failed.

$7 \quad$ Accuracy

For a normal matrix A (for which $A^{\mathrm{T}} A=A A^{\mathrm{T}}$), the Schur decomposition is diagonal and the algorithm reduces to evaluating f at the eigenvalues of A and then constructing $f(A)$ using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm.

For further discussion of the Schur-Parlett algorithm see Section 9.4 of Higham (2008).

8 Further Comments

The integer allocatable memory required is n. If A has real eigenvalues then up to $9 n^{2}$ of real allocatable memory may be required. If A has complex eigenvalues then up to $9 n^{2}$ of complex allocatable memory may be required.

The cost of the Schur-Parlett algorithm depends on the spectrum of A, but is roughly between $28 n^{3}$ and $n^{4} / 3$ floating point operations; see Algorithm 9.6 of Higham (2008).

If the matrix exponential is required then it is recommended that F01ECF be used. F01ECF uses an algorithm which is, in general, more accurate than the Schur-Parlett algorithm used by F01EKF.
If estimates of the condition number of the matrix function are required then F01JAF should be used.
F01FKF can be used to find the matrix exponential, \sin, cos, \sinh or cosh of a complex matrix.

9 Example

This example finds the matrix cosine of the matrix

$$
A=\left(\begin{array}{rrrr}
2 & 0 & 1 & 0 \\
0 & 2 & -2 & 1 \\
0 & 2 & 3 & 1 \\
1 & 4 & 0 & 0
\end{array}\right)
$$

9.1 Program Text

Program f01ekfe
! FO1EKF Example Program Text
! Mark 24 Release. NAG Copyright 2012.
! .. Use Statements ..
Use nag_library, Only: f01ekf, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: imnorm
Integer :: i, ifail, lda, n
Character (4) :: fun
Character (20) :: fun_name
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
! .. Executable Statements ..
Write (nout,*) 'FO1EKF Example Program Results' Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, fun
lda $=$ n
Allocate (a(lda,n))
! Read A from data file
Read (nin,*) (a(i, 1:n), i=1,n)
$!\quad$ Find $f(\mathrm{~A})$
ifail = 0
Call folekf(fun,n,a,lda,imnorm,ifail)
! Print solution
Write (fun_name, Fmt='(3(A))') 'F(A) = ', fun, '(A)'
Write (nout,*)
ifail = 0
Call x04caf('G','N',n,n,a,lda,fun_name,ifail)
! Print the norm of the imaginary part to check it is small
Write (nout,*)
Write (nout, Fmt='(1X,A,F6.2)') 'Imnorm =', imnorm
End Program folekfe

9.2 Program Data

FO1EKF Example Program Data

4	COS			:Values of N and FUN
2.0	0.0	1.0	0.0	
0.0	2.0	-2.0	1.0	
0.0	2.0	3.0	1.0	
1.0	4.0	0.0	0.0	:End of matrix A

9.3 Program Results

```
FO1EKF Example Program Results
```

$F(A)=$			4	4
	CoS (A)	1	2	3

2	-0.2385	-3.2657	0.5812	-1.1460
3	0.4677	0.3008	-4.0853	-0.2200
4	-0.2107	-2.8199	-1.2964	-0.8325
Imnorm $=0.00$				

