F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

# NAG Library Routine DocumentF06UMF

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

## 1  Purpose

F06UMF returns, via the function name, the value of the $1$-norm, the $\infty$-norm, the Frobenius norm, or the maximum absolute value of the elements of a complex $n$ by $n$ upper Hessenberg matrix.

## 2  Specification

 FUNCTION F06UMF ( NORM, N, A, LDA, WORK)
 REAL (KIND=nag_wp) F06UMF
 INTEGER N, LDA REAL (KIND=nag_wp) WORK(*) COMPLEX (KIND=nag_wp) A(LDA,*) CHARACTER(1) NORM

None.
None.

## 5  Parameters

1:     NORM – CHARACTER(1)Input
On entry: specifies the value to be returned.
${\mathbf{NORM}}=\text{'1'}$ or $\text{'O'}$
The $1$-norm.
${\mathbf{NORM}}=\text{'I'}$
The $\infty$-norm.
${\mathbf{NORM}}=\text{'F'}$ or $\text{'E'}$
The Frobenius (or Euclidean) norm.
${\mathbf{NORM}}=\text{'M'}$
The value $\underset{i,j}{\mathrm{max}}\phantom{\rule{0.25em}{0ex}}\left|{a}_{ij}\right|$ (not a norm).
Constraint: ${\mathbf{NORM}}=\text{'1'}$, $\text{'O'}$, $\text{'I'}$, $\text{'F'}$, $\text{'E'}$ or $\text{'M'}$.
2:     N – INTEGERInput
On entry: $n$, the order of the matrix $A$.
When ${\mathbf{N}}=0$, F06UMF returns zero.
Constraint: ${\mathbf{N}}\ge 0$.
3:     A(LDA,$*$) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array A must be at least ${\mathbf{N}}$.
On entry: the $n$ by $n$ upper Hessenberg matrix $A$; elements of the array below the first subdiagonal are not referenced.
4:     LDA – INTEGERInput
On entry: the first dimension of the array A as declared in the (sub)program from which F06UMF is called.
Constraint: ${\mathbf{LDA}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$.
5:     WORK($*$) – REAL (KIND=nag_wp) arrayWorkspace
Note: the dimension of the array WORK must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{N}}\right)$ if ${\mathbf{NORM}}=\text{'I'}$, and at least $1$ otherwise.

None.

Not applicable.